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Abstract— The use of the Internet to undertake violent acts 

that threaten loss of life or other forms of unwanted effects, such 
as data loss, potential economic loss, and insecure situations is 
alarming. This includes the attack to personal computers 
attached to the Internet by sending unwanted objects, such as 
computer viruses, computer worms, phishing, and other 
malicious software.  This paper presents a mathematical model of 
the dynamics of the propagation of malwares or computer 
viruses on a computer network.  The model is inspired by an SIR 
model in epidemiology, in which here the computer population in 
the network is divided into several subpopulations to include the 
susceptible (S), infected (I), and recovered (R) subpopulations. 
Mathematically, the SIR type model forms a system consisting of 
coupled differential equations to describe the infection process 
among subpopulations. Standard tools and analysis from 
dynamical system theory usually are utilized to find both the 
transient and equilibrium solutions of the models under 
investigation. We are especially interested in determining the 
long-term status of a computer network, whether the network 
will be free from the malware/virus or persists with the infection 
of the malware/virus, whenever anti-malware or anti-virus is 
given to some susceptible computers as an attempt to protect the 
computers from the malware or virus attack. Threshold 
parameters to determine the long-term status of the system will 
be investigated for SIR model and some of its generalization such 
as SEIR, SEIQRS, and SEIIQR. 

 
 

Index Terms— basic reproduction number, computer virus, 
critical level of protection (CloP), malware, mathematical model.  

I. INTRODUCTION 
OWADAYS terrorism appears in many different forms. 
One of them is the attack and threat to a network of 

computers by sending various unwanted malicious objects 
such as viruses, malwares, etc. The objects are sent to infect a 
computer and the infected computer propagates the object to 
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other computers through a network. This propagation 
resembles the transmission of infectious disease in human and 
other living creatures. No wonder that the way on how to 
understand the transmission and to control the malicious 
object adopts some ideas from Mathematical Epidemiology, 
the more matured discipline compared to the one that studies 
the propagation of malicious objects in computer networks at 
the time. 

In Mathematical Epidemiology, the first mathematical 
model to study the transmission of contagious disease back to 
1926-1927, when Kermack and McKendrick proposed a 
model which in the modern days is called the SIR 
(Susceptible-Infected-Removed)  model [1], [2]. A brief and 
good  introductory to the theory is given in [3] which 
overviews the  historical development of the theory. More 
advanced treatment can be read in [4], which also contains 
other biological  problems, and more specific materials can be 
found in [5], [6], which present rich methods in mathematical 
epidemiology.   

 It is not clear when is the first use of the theory in 
Computer Science, but the references [7]-[10] are  among the 
early works who used the theory for the transmission of 
computer viruses. Recently the references on the use of this 
mathematical method and its extension and refinement are 
very vast, among others are [11]-[18]. We give a brief review 
of the mathematical method of the SIR model in the following 
section.  

II. METHOD 
We use a mechanistic mathematical modeling in studying 

the propagation of a malware in a network of computers. We 
follow the method of  [1] and [2] to construct the SIR 
mathematical model of the malware propagation by 
mimicking the malware propagation as if a disease 
transmission in human population.  

In their model the authors in [1] and [2] assume that the 
population under investigation is divided into three 
subpopulations: subpopulation contains those healthy 
individuals yet susceptible  to the disease (S), subpopulation 
contains those infected individuals (I), and subpopulation 
contains those individuals recovered from the disease (R). The 
model has the form in a system of three differential equations, 
S'(t), I'(t), and R'(t), representing the rates of change for the 
respective subpopulations. Now let us see the transmission in 
a network perspective as follows. Let us assume a computer 
networks consists of N unit of computers. The number of 
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susceptible, infected, and recovered computers at time t is S(t), 
I(t), and R(t), respectively (for the SIR model), with   
S(t) + I(t) + R(t) = N. Upon the completion of the model 
development and analyis, we proceed by modifying the model 
to more realistic cases, such as SEIR, SEIQRS, and SEIIQR. 
We look for the endemic equilibrium solution for each model 
and solve the critical protection level from the resulting 
endemic equilibrium by relating it to the basic reproduction 
number of each model. The following section present the 
results for the SIR model and it’s modification in the forms of 
SEIR, SEIQRS, and SEIIQR models. 

 

III. RESULTS AND DISCUSSIONS 

3.1 SIR Model of  Virus/Malware Transmission 
Let us assume a computer networks consists of N unit of 

computers. The number of susceptible, infected, and recovered 
computers at time t is S(t), I(t), and R(t), respectively, with   
S(t) + I(t) + R(t) = N. The SIR model is governed by a system 
of differential equations : 
            SIS β−=' , kISII −= β' , and kIR ='  (1) 
with  β  represents the number of contacts per unit time  that 
are sufficient to spread the virus/malware to other computers. 
If we assume a homogeneous mixing of the computers in the 
network, on average, each infected individual generates  β S(t) 
new infected computers, so that the rate of conversion of 
susceptible computers to infected computers is β S(t) I(t).   We 
then assume that a fixed fraction γ of the infected group will 
recover during any given unit time, so that  the rate of 
conversion of infected computers recovered computers is γ 
I(t).  

The equilibrium solution is found by solving the equations  
S′ = 0, I′ = 0, and R′ = 0 to obtain (S*, I*, R*) with S* = k/β,  
I* = 0,  and R*= 0. In fact for I* = 0 and R* = 0, any values of S* 

is the equilibrium solution. This equlibrium indicates that 
eventually the system will end up either with all susceptible 
computers are infected or only some of them are  infected. In 
both cases the infection dies out eventually. We give an 
illustration for both cases with parameters β = 0.0025 and  
g = 0.045 (Fig. 1) in which not all of the computers are 
infected and β = 0.025 and g = 0.045 (Fig. 2) in which all of 
the computers are infected. 

A. Deriving a protection level p 
Recall that the positive equilibrium point is given by S* = 

k/β, which tells us that eventually the number of uninfected 
computers, if there is no action to protect the network from the 
malware/virus, will be this number. Suppose that now we give 
a protection to the network, then the system will ends up to a 
new equilibrium, called S*p which expected should be bigger 
than S* = 

β
k  (there are more uninfected computers in the 

network due to the effect of protection), hence S*p ≥ S* = 
β
k . 

This condition can be achieved for example by lowering the 

value of β to a new level, say (1-p)β with 0 < p < 1 so that  
S*p = 

β)1( p
k

−
> S*. The last condition is always satisfied by 

any chosen protection level p with 0 < p < 1.  
 

 

 
B. Another form of SIR model 

The SIR model has been modified to many directions, for 
example by introducing procurement of new susceptible 
computers to the network (П), while also considering some 
computers that are discarded from the network due to their 
obsolete or damage (δ), and a more realistic force of infection  
β that takes account the probability of succesful contact with 
susceptible computers (with other types of computers, infected 
or recovered). In a normalized form, the model now may looks 
like: 

 
      SSIS δβ −−Π=' , IkISII δβ −−=' , and RkIR δ−='  (2) 

 
with the malware/virus-free equilibrium solution is (S*, I*, R*) 
with S* = 

δ
Π , I* = 0, and R*= 0 and the endemic equilibrium 

solution is (Se, Ie, Re) with Se = 
β

δ )( +k , Ie = 








−

+
Π 1

)( δδ
β

β
δ

k
, 

and Re = eIk
δ

. Note that the equilibrium solution of infected 

computers exists only if Ro = 1
)(

>
+

Π
δδ

β
k

. Unlike the first 

form of the SIR model, in which the equilibrium solution of 

 
Fig. 1.  Plots of  S, I, and R for SIR-1 model with low β. 

 
Fig. 2.  Plots of  S, I, and R for SIR-1 model with high β. 
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the infected computers is zero, here there is a number Ro, 
which has a property as a threshold number with the threshold 
value 1. It is determining the existence and nonexistence of the 
endemic equilibrium Ie. Hence it is plausible to concept that 
any protection is directed to make the endemic equilibrium 
dissapear (equivalent by saying that the effective Ro  - the new 
Ro in the present of protection level p - is less than one). There 
are many papers discussing the stability of this equilibrium 
with the relation to this threshold. Mathematical epidemiology 
literatures call this threshold as the basic reproduction number.  
 

C. Deriving the critical  protection level p of another form of 
SIR model 

As mentioned above any action of protection is technically 
directed to lowering the basic reproduction number so that it is 
less than one. This can be done for example by lowering the 
attack rate/the force of infection from β to (1-p)β with  
0 < p < 1. Subtituting this value into the model will give rise 
to the effective basic reproduction number Rp = 

)(
)1(
δδ

β
+

Π−
k
p . 

This number should be less than one, to guarantee that the 
endemic equilibrium will dissapear. Solving this for p will end 
up to  p > p* = 1 – 1/Ro  = 

)(
1)(

δβδ
δβδ
+Π

−+Π
k

k  . We will call this p 

as the critical level of protection (CloP). Any protection level 
greater than this CLoP will eliminate the spread of the 
malware/virus, while any protection level lower than this 
CLoP will not able to eliminate the spread of malware/virus.  

As an illustration we give numerical  examples. Fig. 3 
shows the plots of S, I, and R subpopulations with low 
malware/virus infection rate (β = 0.045, k = 0.045, μ = 0.1, k = 
0.045, П = 0.25, with the resulting basic reproduction number 
Ro  is less than one) and Fig. 4 shows the plots of S, I, and R 
subpopulations with high malware/virus infection rate (β = 
0.25, k = 0.045, μ = 0.1, k = 0.045, П = 0.25 with the resulting 
basic reproduction number Ro is more than one). In Fig. 3, 
since eventually the malware/virus infection dies out, we do 
not have to do anything. However in Fig. 4, since the 
malware/virus infection is persisting in the network (endemic), 
a protection intervention should be done. 
 

 

 
 
Fig. 5 shows the plots of  S (susceptible computer 

subpopulation) with high malware/virus infection rate (as in 
Fig. 4) with various level of protections: no protection, low 
protection (lower than the sugested CLoP = p*), and sufficient 
protection (higher than the suggested CLoP = p*). Sufficient 
protection at a level higher than the CLoP give a significant 
result in protecting the computers in the network. Fig. 6 shows 
the plots of I (infected computer subpopulation) with various  
rate of protections as in Fig. 5. It reveals that deploying 
protection at a level lower than the suggested rate will not able 
to eliminate the malware/virus infection in the long run. It is 
worth to note that there is a close  relationship between the 
natural basic reproduction number with the suggested or 
critical level of protection, given by p* = 1 – 1/R0.  

 We note that a deployment of protection at the level 
higher than p* will eliminate the malware/virus infection, 
otherwise (i.e. a protection lower than this value) will make 
the infection remain persists in the network (endemic). This 
rules of thumb is true for all cases of p, and can be proved 
mathematically. This is among the important finding in the 
theory of computer epidemiology.  The following section will 
investigate the rules of thumb for different models. 

 
 

 

 
Fig. 3.  Plots of  S, I, and R for SIR-2 model with low β. 

 
Fig. 4.  Plots of  S, I, and R for SIR-2 model with high β. 

 
Fig. 5.  Plots of  S  for SIR-2 model with high β. 
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3.2 Extensions of SIR Model 
The SIR model is the simplest mathematical form of the 

malware/virus transmission equation in a network. There are 
many direction in extending the SIR model. Some examples 
are [15] introduced the protected class explicitly into the SIR 
model, [13] introduced several human interventions in the SIR 
model, some authors refined the model by introducing 
exposed class of computers to make the SIR model more 
realistic, such as [11], [18], some authors adding different 
route of infection, such as the vertical transmission [12], some 
authors considered reinfection due to the loss of immunity 
after longtime recovery [14], some works present the SIR 
model in the contex of fractional-order delayed malware 
propagation [16].  In this section we review some of the 
extended model by relating it to the concept of CLoP we 
introduced here.  

The authors in [11] proposed a SEIQRS model for the 
transmission of malicious object in computer network.  They 
assumed that the population of computer in the network is 
divided into susceptible (S), exposed (E), infected (I), 
quarantine (Q), and recovered/removal (R) classes. In this 
model, after the run of anti-malicious software, the computer 
network becomes temporary recovered but they will move to 
the susceptible class due to the loss of immunity after a certain 
period. The model is governed by the following system of 
differential equations 

 
  RSSIAS ηδβ +−−='  (3.a) 
  EdSIE )(' µβ +−=  (3.b) 
  IdEI )(' δγαµ +++−=  (3.c) 
  QdIQ )(' εαδ ++−=  (3.d) 
  RdQIR )(' ηεγ +−+=  (3.d) 

with { }RQIESX
dt
dXX ,,,,,' ∈= . 

 
They found  the basic reproduction number, given by  

ROQ = 
d

dA
++++ γδαµ

β )/( , and the malware-endemic equlibrium 

in the form of ROQ (S*, E*, I*, Q*, R*), with S* = 
OQR

dA / , 

* ( 1)OQd R
E

β
−

=
, 

* ( 1)OQd R
I

d
µ

β α
−

=
+ , 

* ( 1)OQR
Q

d
δ µ

β ε α
−  =  + +  , and 

* ( 1)OQR
R

d
εδηγ

β η ε α
−  

= + + + +  . By following the same procedure 
as before, the critical level of malware treatment is 

* ( )A d dp
A

β µ α δ γ
β

− + + + +
=

. We found the following theorem 
on deploying the malware/virus protection. We omit the proof 
since it is a direct consequence of the stability properties of the 
endemic state described in the original paper of [11]. 

 
 

Theorem 1: Suppose that p is the level of malware/virus 
protection in a network with SEIQR malware/virus 
transmission model such that the effect of the protection is to 
reduce the basic reproduction number ROQ to the effective 
reproduction number ReffQ = 

d
dAp

++++ γδαµ
β )/(  with βp = (1-p)β 

for 0 < p < 1 the following is true: 
 

a) If p is less than the critical level of protection  
p*= 

A
ddA

β
γδαµβ )( ++++−  then  the malware/virus will 

endemic in the network.  
b) If p is more than the critical level of protection  

p*=
A

ddA
β

γδαµβ )( ++++−   then  the malware/virus will 

dissapear from  the network. 

 

 The following numerical examples are presented to give 
visual illustration of the results above and Theorem 1. We use 
two different data sets: Data Set 1 represents a low attack rate 
of malware/virus taken from [11] and Data Set 2 represents a 
high attack rate of malware/virus by modifying the Data Set 1 
to obtain the basic reproduction number that greater than one 
as follows: 

 
Data set 1: 

{A = 0.3; d = 0.1; μ = 0.3; β = 0.3, ε = 0.3, γ = 1.8; η = 0.2;  
α = 0.2; δ = 3.8} 
with S(0) = 200; E (0) = 0; I(0) = 1; Q(0) = 0; R(0) = 0. 

Data set 2: 
{A = 1.2; d = 0.05; μ = 0.15; β = 0.15, ε = 0.3, γ = 0.09; η = 
0.2; α = 0.02; δ = 0.38} 
With S(0) = 200; E (0) = 0; I(0) = 1; Q(0) = 0; R(0) = 0. 

 
The solution for  data sets 1 and 2 is shown in Fig. 7 and 8, 
respectively. Fig. 7 shows that the infected subpopulation will 
die out eventually. The basic reproduction number for this 
data set is  ROQ = 0.15. This means that there is nothing to do 
because the infected computer populations eventually goes to 
zero. 

 
Fig. 6.  Plots of  I  for SIR-2 model with high β. 
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Fig. 8  shows that the infected subpopulation (yellow) will 
be stable at a certain positive level eventually (in fact, it can be 
proved mathematically), besides there is an outbreak at t = 5. 
The basic reproduction number for this data set is ROQ = 5.22. 
This means that there has something to do to drive the infected 
computer populations to go to zero, e.g. by giving anti 
malware/virus to some portion of susceptible computers 
subpopulation, say at the level of p. The theorem says that p 
should be bigger than p* = 81.0)(

≈
++++−

A
ddA

β
γδαµβ

(more than 81% of the susceptible computers must be 
“vaccinated”).   
 

 

 Fig. 9 shows the solution when we set p below the 
threshold value (only 50% of the susceptible computers 
subpopulation is vaccinated) and above the threshold value 
(85% of the susceptible computers subpopulation is 
vaccinated). For 50% protection, there is still a high peak of 
outbreak (approximately 25 infected computers at time t=10 
with a positive equilibrium in the long-term (2 infected 
computers). Meanwhile, for 85% protection although there is 
still an outbreak but the peak is lower (approximately 14 
infected computers at time t = 17 and the long-term infection 
almost gone. If you do not happy with the result (because of 
the outbreak, then increase the protection level. The theory of 
the CLoP (critical level of protection) is directed only to 
control the long-term solution for the infected computers, not 
to the size of  infection at certain time. This may be a subject 
for future investigation. 

 

 
  
We also compute the CLoP for other transmission models, 

such as SEIR, and  SEIIQRS  which are presented in Table I 
and Table II, but we do not go into the details since the 
derivation is analogous to previous models in the paper. 
Readers who would like to implement the theory are advised 
to read the original paper of the model as indicated in the 
references. 
 

 

 
Fig. 7.  Plots of  all subpopulations for SEIQR model with low β (Data-Set 
1). Reproduced from [11] with the same parameters, but probably different 
initial values. 

 
Fig. 8.  Plots of  all subpopulations for SEIQR model with high β (Data-Set 2). 

 
Fig. 9.  Plots of  all subpopulations for SEIQR model with high β (Data-Set 2). 
 

TABLE I 
NETWORK EPIDEMIC MEASURES 

Transmission 
Model R0 NESI as a function  

of R0 
SIR-1 

k
R β

=0
 Ie = 0 
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Ro: Basic Reproduction Number 
NESI: Natural Equilibrium State of Infection 
 
 

 
 

TABLE II 
CRITICAL PROTECTION LEVELS 

Transmission 
Model 

Network Epidemic Measures 
CLoP 

SIR-1 none 
SIR-2 

)(
1)(*

δβδ
δβδ
+Π

−+Π
=

k
kp

 

SEIR* [19] 
)(

)(*

cA
abccAp

+
−+

=
αβ

αβ  

SEIQR [11] 
A

ddAp
β

γδαµβ )(* ++++−
=

 

SEIIQR [18] 
MR

p 11* −=
 

 
CLoP: Critical Level of Protection 
* The model assumes at any time, a computer is classified as internal and 
external depending on weather it is connected to internet or not. 
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IV. CONCLUSION 
In this paper we have developed some mathematical models 

of malware/virus transmission in a network of computers. 
Several models, such as the SIR (type 1 and 2), SEIR, 
SEIQRS, and  SEIIQRS  are investigated. We did a standard 
procedure to obtain the basic reproduction number for each 
model and found the critical level of protection for each model 
that able to eliminate the malware/virus in the long run. The 
work ignore the cost of intervention. The inclusion of the cost 
of intervention is predicted could alter the critical level of 
protection. This is among the future research direction that 
worth to explore. The method can also be applied to other 
similar system such as those in [20]. 
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