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Mathematical Models of Malware Propagation:
A Critical Level of Protection (CLoP)
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Abstract— The use of the Internet to undertake violent acts
that threaten loss of life or other forms of unwanted effects, such
as data loss, potential economic loss, and insecure situations is
alarming. This includes the attack to personal computers
attached to the Internet by sending unwanted objects, such as
computer viruses, computer worms, phishing, and other
malicious software. This paper presents a mathematical model of
the dynamics of the propagation of malwares or computer
viruses on a computer network. The model is inspired by an SIR
model in epidemiology, in which here the computer population in
the network is divided into several subpopulations to include the
susceptible (S), infected (1), and recovered (R) subpopulations.
Mathematically, the SIR type model forms a system consisting of
coupled differential equations to describe the infection process
among subpopulations. Standard tools and analysis from
dynamical system theory usually are utilized to find both the
transient and equilibrium solutions of the models under
investigation. We are especially interested in determining the
long-term status of a computer network, whether the network
will be free from the malware/virus or persists with the infection
of the malware/virus, whenever anti-malware or anti-virus is
given to some susceptible computers as an attempt to protect the
computers from the malware or virus attack. Threshold
parameters to determine the long-term status of the system will
be investigated for SIR model and some of its generalization such
as SEIR, SEIQRS, and SEIIQR.

Index Terms— basic reproduction number, computer virus,
critical level of protection (CloP), malware, mathematical model.

I. INTRODUCTION

OWADAYS terrorism appears in many different forms.
One of them is the attack and threat to a network of
computers by sending various unwanted malicious objects
such as viruses, malwares, etc. The objects are sent to infect a
computer and the infected computer propagates the object to
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other computers through a network. This propagation
resembles the transmission of infectious disease in human and
other living creatures. No wonder that the way on how to
understand the transmission and to control the malicious
object adopts some ideas from Mathematical Epidemiology,
the more matured discipline compared to the one that studies
the propagation of malicious objects in computer networks at
the time.

In Mathematical Epidemiology, the first mathematical
model to study the transmission of contagious disease back to
1926-1927, when Kermack and McKendrick proposed a
model which in the modern days is called the SIR
(Susceptible-Infected-Removed) model [1], [2]. A brief and
good introductory to the theory is given in [3] which
overviews the historical development of the theory. More
advanced treatment can be read in [4], which also contains
other biological problems, and more specific materials can be
found in [5], [6], which present rich methods in mathematical
epidemiology.

It is not clear when is the first use of the theory in
Computer Science, but the references [7]-[10] are among the
early works who used the theory for the transmission of
computer viruses. Recently the references on the use of this
mathematical method and its extension and refinement are
very vast, among others are [11]-[18]. We give a brief review
of the mathematical method of the SIR model in the following
section.

1. METHOD

We use a mechanistic mathematical modeling in studying
the propagation of a malware in a network of computers. We
follow the method of [1] and [2] to construct the SIR
mathematical model of the malware propagation by
mimicking the malware propagation as if a disease
transmission in human population.

In their model the authors in [1] and [2] assume that the
population under investigation is divided into three
subpopulations:  subpopulation contains those healthy
individuals yet susceptible to the disease (S), subpopulation
contains those infected individuals (I), and subpopulation
contains those individuals recovered from the disease (R). The
model has the form in a system of three differential equations,
S'(t), I'(t), and R'(t), representing the rates of change for the
respective subpopulations. Now let us see the transmission in
a network perspective as follows. Let us assume a computer
networks consists of N unit of computers. The number of
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susceptible, infected, and recovered computers at time t is S(t),
I(t), and R(t), respectively (for the SIR model), with
S(t) + I(t) + R(t) = N. Upon the completion of the model
development and analyis, we proceed by modifying the model
to more realistic cases, such as SEIR, SEIQRS, and SEIIQR.
We look for the endemic equilibrium solution for each model
and solve the critical protection level from the resulting
endemic equilibrium by relating it to the basic reproduction
number of each model. The following section present the
results for the SIR model and it’s modification in the forms of
SEIR, SEIQRS, and SEIIQR models.

I1l. RESULTS AND DISCUSSIONS

3.1 SIR Model of Virus/Malware Transmission

Let us assume a computer networks consists of N unit of
computers. The number of susceptible, infected, and recovered
computers at time t is S(t), I(t), and R(t), respectively, with
S(t) + I(t) + R(t) = N. The SIR model is governed by a system
of differential equations :

S'=-pSI, I'= Sl —kl ,and R'=KkI 1)
with g represents the number of contacts per unit time that
are sufficient to spread the virus/malware to other computers.
If we assume a homogeneous mixing of the computers in the
network, on average, each infected individual generates S S(t)
new infected computers, so that the rate of conversion of
susceptible computers to infected computers is g S(t) I(t). We
then assume that a fixed fraction y of the infected group will
recover during any given unit time, so that the rate of
conversion of infected computers recovered computers is y
1(t).

The equilibrium solution is found by solving the equations
S"=0,1'=0, and R’' = 0 to obtain (5", I, R") with S" = k/5,
I"=0, and R*= 0. In fact for I"= 0 and R"= 0, any values of S
is the equilibrium solution. This equlibrium indicates that
eventually the system will end up either with all susceptible
computers are infected or only some of them are infected. In
both cases the infection dies out eventually. We give an
illustration for both cases with parameters f = 0.0025 and
g = 0.045 (Fig. 1) in which not all of the computers are
infected and g = 0.025 and g = 0.045 (Fig. 2) in which all of
the computers are infected.

A. Deriving a protection level p

Recall that the positive equilibrium point is given by S* =
ki, which tells us that eventually the number of uninfected
computers, if there is no action to protect the network from the
malware/virus, will be this number. Suppose that now we give
a protection to the network, then the system will ends up to a
new equilibrium, called S™ which expected should be bigger

than S = K (there are more uninfected computers in the

B

network due to the effect of protection), hence S >S" = K .

=

This condition can be achieved for example by lowering the
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value of f to a new level, say (1-p)g with 0 < p < 1 so that

s = _ K > The last condition is always satisfied by
1-ps
any chosen protection level p with 0 <p < 1.
Rty
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Fig. 1. Plots of S, I, and R for SIR-1 model with low .
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Fig. 2. Plots of S, I, and R for SIR-1 model with high p.

B. Another form of SIR model

The SIR model has been modified to many directions, for
example by introducing procurement of new susceptible
computers to the network (IT), while also considering some
computers that are discarded from the network due to their
obsolete or damage (3), and a more realistic force of infection
£ that takes account the probability of succesful contact with
susceptible computers (with other types of computers, infected
or recovered). In a normalized form, the model now may looks
like:

S'=M-AS1 -85, I'= &SI -kl = , andR'=kI ~-R (2

with the malware/virus-free equilibrium solution is (S*, I, R")
with S* = II "= 0, and R"= 0 and the endemic equilibrium

o
solution is (S% 15, R®) with 52 = (K+9) je= & TS ),
yij B\ Sk+6)
and Re= K |-, Note that the equilibrium solution of infected
o
computers exists only if R, = _ I8 >1- Unlike the first

S(k+96)
form of the SIR model, in which the equilibrium solution of
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the infected computers is zero, here there is a number Ro,
which has a property as a threshold number with the threshold
value 1. It is determining the existence and nonexistence of the
endemic equilibrium I°. Hence it is plausible to concept that
any protection is directed to make the endemic equilibrium
dissapear (equivalent by saying that the effective R, - the new
Ro in the present of protection level p - is less than one). There
are many papers discussing the stability of this equilibrium
with the relation to this threshold. Mathematical epidemiology
literatures call this threshold as the basic reproduction number.

C. Deriving the critical protection level p of another form of
SIR model

As mentioned above any action of protection is technically
directed to lowering the basic reproduction number so that it is
less than one. This can be done for example by lowering the
attack rate/the force of infection from p to (1-p)g with
0 < p < 1. Subtituting this value into the model will give rise
to the effective basic reproduction number R, = = P)I15

o(k+9)
This number should be less than one, to guarantee that the
endemic equilibrium will dissapear. Solving this for p will end
upto p>p =1-1/R, = HB6(K+6)-1 we will call this p

a5k +6)

as the critical level of protection (CloP). Any protection level
greater than this CLoP will eliminate the spread of the
malware/virus, while any protection level lower than this
CLoP will not able to eliminate the spread of malware/virus.

As an illustration we give numerical examples. Fig. 3
shows the plots of S, I, and R subpopulations with low
malware/virus infection rate ( = 0.045, k =0.045, n=0.1,k =
0.045, IT = 0.25, with the resulting basic reproduction number
Ro is less than one) and Fig. 4 shows the plots of S, I, and R
subpopulations with high malware/virus infection rate (B =
0.25,k=10.045, n= 0.1, k= 0.045, IT = 0.25 with the resulting
basic reproduction number R, is more than one). In Fig. 3,
since eventually the malware/virus infection dies out, we do
not have to do anything. However in Fig. 4, since the
malware/virus infection is persisting in the network (endemic),
a protection intervention should be done.

e
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Fig. 3. Plots of S, I, and R for SIR-2 model with low .
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Fig. 4. Plots of S, I, and R for SIR-2 model with high p.

Fig. 5 shows the plots of S (susceptible computer
subpopulation) with high malware/virus infection rate (as in
Fig. 4) with various level of protections: no protection, low
protection (lower than the sugested CLoP = p”), and sufficient
protection (higher than the suggested CLoP = p®). Sufficient
protection at a level higher than the CLoP give a significant
result in protecting the computers in the network. Fig. 6 shows
the plots of | (infected computer subpopulation) with various
rate of protections as in Fig. 5. It reveals that deploying
protection at a level lower than the suggested rate will not able
to eliminate the malware/virus infection in the long run. It is
worth to note that there is a close relationship between the
natural basic reproduction number with the suggested or
critical level of protection, given by p* =1 - 1/R,.

We note that a deployment of protection at the level
higher than p” will eliminate the malware/virus infection,
otherwise (i.e. a protection lower than this value) will make
the infection remain persists in the network (endemic). This
rules of thumb is true for all cases of p, and can be proved
mathematically. This is among the important finding in the
theory of computer epidemiology. The following section will
investigate the rules of thumb for different models.
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Fig. 5. Plots of S for SIR-2 model with high p.
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Fig. 6. Plots of | for SIR-2 model with high B.

3.2 Extensions of SIR Model

The SIR model is the simplest mathematical form of the
malware/virus transmission equation in a network. There are
many direction in extending the SIR model. Some examples
are [15] introduced the protected class explicitly into the SIR
model, [13] introduced several human interventions in the SIR
model, some authors refined the model by introducing
exposed class of computers to make the SIR model more
realistic, such as [11], [18], some authors adding different
route of infection, such as the vertical transmission [12], some
authors considered reinfection due to the loss of immunity
after longtime recovery [14], some works present the SIR
model in the contex of fractional-order delayed malware
propagation [16]. In this section we review some of the
extended model by relating it to the concept of CLoP we
introduced here.

The authors in [11] proposed a SEIQRS model for the
transmission of malicious object in computer network. They
assumed that the population of computer in the network is
divided into susceptible (S), exposed (E), infected (1),
quarantine (Q), and recovered/removal (R) classes. In this
model, after the run of anti-malicious software, the computer
network becomes temporary recovered but they will move to
the susceptible class due to the loss of immunity after a certain
period. The model is governed by the following system of
differential equations

S'=A-FSI -5 +13R (3.2)
E'=/4SI—(d + u)E (3.b)
I'=spE-(d+a+y+0)l (3.c)
Q=0 -(d+a+¢)Q (3.d)
R=pA+Q-(d+7)R (3.d)

with x-:%(,x <{S,E.1,Q.R}

They found the basic reproduction number, given by
B(Ald) , and the malware-endemic equlibrium
H+a+S+y+d

in the form of Rog (S*, E*, I, Q", R, with §* = A/d
R

RoQ =

oQ
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*:d(ROQ _1) |*=d(R0Q _l) H
B B

(Roo_l) i 6‘577
B n+e+d+a

as before, the critical
. PA-d(u+a+5+y+d)

BA . We found the following theorem
on deploying the malware/virus protection. We omit the proof
since it is a direct consequence of the stability properties of the
endemic state described in the original paper of [11].

E

*:6(ROQ_1)[ M j
d+a' Y] c+d+a . and

|
. By following the same procedure
level of malware treatment is

p

Theorem 1: Suppose that p is the level of malware/virus

protection in a network with SEIQR malware/virus

transmission model such that the effect of the protection is to

reduce the basic reproduction number Rog to the effective
BP(AId)  with gp= (1-p)B

u+a+6+y+d

for 0 < p < 1 the following is true:

reproduction number Resq =

a) If p is less than the critical level of protection

p’= pA-d(u+a+5+y+d) then the malware/virus will
BA

endemic in the network.

b) If p is more than the critical level of protection
P=pA-d(u+a+5+y+d) then  the malware/virus will

PA

dissapear from the network.

The following numerical examples are presented to give
visual illustration of the results above and Theorem 1. We use
two different data sets: Data Set 1 represents a low attack rate
of malware/virus taken from [11] and Data Set 2 represents a
high attack rate of malware/virus by modifying the Data Set 1
to obtain the basic reproduction number that greater than one
as follows:

Data set 1.
{A=03;d=01;,1=03;=03,6=03,y=18,1n1=02;
a=0.2;0=3.8}

with S(0) = 200; E (0) = 0; I(0) = 1; Q(0) = 0; R(0) = 0.
Data set 2:
{A=12;d=0.05 p=0.15p=0.15¢=03,vy=0.09;n =
0.2; 0. =0.02; 6 = 0.38}
With S(0) = 200; E (0) =0; 1(0) = 1; Q(0) = 0; R(0) = 0.

The solution for data sets 1 and 2 is shown in Fig. 7 and 8,
respectively. Fig. 7 shows that the infected subpopulation will
die out eventually. The basic reproduction number for this
data set is Rog = 0.15. This means that there is nothing to do
because the infected computer populations eventually goes to
zero.
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Fig. 7. Plots of all subpopulations for SEIQR model with low f (Data-Set
1). Reproduced from [11] with the same parameters, but probably different
initial values.
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Fig. 8. Plots of all subpopulations for SEIQR model with high B (Data-Set 2).

Fig. 8 shows that the infected subpopulation (yellow) will
be stable at a certain positive level eventually (in fact, it can be
proved mathematically), besides there is an outbreak at t = 5.
The basic reproduction number for this data set is Rog = 5.22.
This means that there has something to do to drive the infected
computer populations to go to zero, e.g. by giving anti
malware/virus to some portion of susceptible computers
subpopulation, say at the level of p. The theorem says that p
should be bigger than p* = AA-d(u+a+d5+y+d)

PA
(more than 81% of the susceptible computers must be
“vaccinated”).
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Fig. 9. Plots of all subpopulations for SEIQR model with high p (Data-Set 2).
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Fig. 9 shows the solution when we set p below the
threshold value (only 50% of the susceptible computers
subpopulation is vaccinated) and above the threshold value
(85% of the susceptible computers subpopulation is
vaccinated). For 50% protection, there is still a high peak of
outbreak (approximately 25 infected computers at time t=10
with a positive equilibrium in the long-term (2 infected
computers). Meanwhile, for 85% protection although there is
still an outbreak but the peak is lower (approximately 14
infected computers at time t = 17 and the long-term infection
almost gone. If you do not happy with the result (because of
the outbreak, then increase the protection level. The theory of
the CLoP (critical level of protection) is directed only to
control the long-term solution for the infected computers, not
to the size of infection at certain time. This may be a subject
for future investigation.

TABLEI
NETWORK EPIDEMIC MEASURES

Transmission NESI as a function

Model Ro of Ro
SIR-1 R b F=0
° Kk
SIR-2 RU:L'B Iezé g "
5(k+0) BLo(k+0)
SEIR* [19] R - A+ pe) |- Aa(R, -1)
¢ abc bR,
SEIQR [11] R __ BAld) AR -1
QT ra+S+y+d - B d+a
SEIIQR [18] Ry gl Ly X o Xy .

XX, UX XX v 2= 1
(X Xy —1v)

Ro: Basic Reproduction Number
NESI: Natural Equilibrium State of Infection

We also compute the CLoP for other transmission models,
such as SEIR, and SEIIQRS which are presented in Table |
and Table Il, but we do not go into the details since the
derivation is analogous to previous models in the paper.
Readers who would like to implement the theory are advised
to read the original paper of the model as indicated in the
references.

TABLE Il
CRITICAL PROTECTION LEVELS

Network Epidemic Measures

Transmission

Model CLoP
SIR-1 none
SIR-2 . TAS(Kk+8)—1
T npsk+95)
SEIR* [19] . AB(a+c)—abc
P = AB@+0)
SEIQR [11] p*:ﬁA—d(y+a+§+y+d)
PA
SEIIQR [18] o1 b
RM

CLoP: Critical Level of Protection
* The model assumes at any time, a computer is classified as internal and
external depending on weather it is connected to internet or not.
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IV. CONCLUSION

In this paper we have developed some mathematical models
of malware/virus transmission in a network of computers.
Several models, such as the SIR (type 1 and 2), SEIR,
SEIQRS, and SEIIQRS are investigated. We did a standard
procedure to obtain the basic reproduction number for each
model and found the critical level of protection for each model
that able to eliminate the malware/virus in the long run. The
work ignore the cost of intervention. The inclusion of the cost
of intervention is predicted could alter the critical level of
protection. This is among the future research direction that
worth to explore. The method can also be applied to other
similar system such as those in [20].
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