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Robust and Non-Robust Analysis of Semivariogran
Isotropic in Crime Data by Changing Sill, Case
Study: Bandung’s Theft Data
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Abstract—Research in criminality is sufficiently developed but
mathematical statistics analysis has little role in this field. In
Indonesia, this research is mostly done in descriptive statistics
and simple modeling. The population development has an effect
on social and economy. Consequently, the crime rate increases
with the compliance of people’s living needs. In this research, we
focus on analyzing criminal loss caused by theft. The loss is
modeled by an isotropic semivariogram model. Here, we consider
the non-robust Matheron model and the robust Cressie-Hawkins
and Dowd models to analyze semivariogram of the crime. The
best model is determined from the variance of loss and statistics
of experimental semivariogram such as mean, first quartile,
median, and third quartile. Data with enough high loss has
candidate of sill that is first and third quartile of experimental
semivariogram. We apply the analysis to Bandung’s theft data
and corresponding model is exponential with a range of 4.45
kilometers. Through this model, we can predict theft having
significant losses at the range of 4.45 kilometers. This
information can be a recommendation for the police to raise
awareness for locations around 4.45 kilometers from the location
of theft.

Index Terms—Cressie-Hawkins, Crime, Dowd, Loss Value,
Matheron, Range, Sill, Theft

I. INTRODUCTION

Acrime is defined as an act that breaches the criminal laws
of an authority (such as a state or country). Crimes can be
carried out against individuals, organizations, the state or
involve the destruction of property [1]. Everyone has the same
chance to experience the consequences of a crime such as
theft. The necessities of life that must be obtained and the
difficulty of getting job make some people will do anything
even to commit a crime. Crime is one of interesting social
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problems to discussed and studied further. It is proved by there
were some researches about crime since 19 century. In 1983,
Guerry analyzed the distribution of crimes according to the
poverty, the lack in education and the density of population of
the departments but he concluded that these variables are not
directly causes of crime occurrence [2]. Moreover, there are
some researches about crimes used some method such as
variogram, Poisson Kriging, self-exciting point, fuzzy time
series, time series modeling, spatial model, regression, and
binomial negative.

Car-related thefts in Estonia, Latvia, and Lithuania in 2000
was analyzed used variogram to inform about the scales of
variation in offense, social, and economic data. Area-to-area
and Area-to-point Possion Kriging were used to filter the noise
caused by the small number problem [3]. In 2011, Mohler et
al. proposed self-exciting point processes can be adapted for
the purpose of crime modeling and were well suited to capture
the spatial-temporal clustering patterns observed in crime data.
The results of their research was illustrated how crime hotspot
maps can be improved using the self-exciting point process
framework [4]. Shrivastav and Ekata used fuzzy time series
for forecasting of crime. Here, the historical data of crime
incidents (cases of murder in Delhi City) was used to build an
test their model. This model could be used as a tool for
effective crime prevention strategies [5]. They also modeled
historical crime data for forecasting of crime in India. The
result show that ARIMA(1,1,1) was the best model [6]. In
2015, spatial with GIS techniques was used to analyze factor
responsible for spread of crime activities in Akure, Nigeria.
GIS technique is a tool for detecting crime pattern, occurrence,
prediction, and commensurate measures [7]. In Indonesia, the
research of crime had not developed yet, the data of crime
only explore by showing the descriptive statistics so the
historical crime data have been explored optimally.
Development of mathematical statistics also have not role
much in crime analysis. In Bandar Lampung, the crime rate
based on the police department’s record is presented by a
quantitative approach (2007-2011). The peak of crime rate
reached 24.2 in 2009. The crime rate of theft had a fairly
crime rate compared to other types of crimes such as: murder,
fraud, torture, gambling, extortion, and rape [8]. Meanwhile,
Delia analyzed causes of fear of crime on theft case among
housewives. She used regression to determine four factors that
caused the fear of crime. Those factors were knowledge about
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crime, vulnerability becomes victim of crime, the state of the
neighborhood, and perseption of law system. The Regression
model represented that these four factors significantly
influence with fit model of 54.2% [9].

In this research, spatial analysis is used to explore
Bandung’s theft data. Bandung is the capital of West Java
province in Indonesia. Since the Dutch colonial period,
Bandung has strong link and economic dependence with
Jakarta, the capital of Indonesia. As the population grew,
Bandung became a tourist destination and an exclusive resort
area for plantation owners and business people from Batavia.
This introduces the first wave of cultural industry in the city
with the European lifestyle cafes, restaurants, shops, and art-
deco hotels. This led to Bandung being named "Paris van
Java" [10]. Moreover, Bandung is one of the most populated
cities in the world, especially: Cicadas, Kiaracondong, and
Bandung kulon. The density of population reached 13,000 per
square kilometers. The map of West Java province, Indonesia
is presented in the Fig. 1. The population development has an
effect on social and economy. Consequently, the crime rate
increases with the compliance of the people's living needs.
One of the most common crime types in the city is theft.
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Fig. 1. The map of Bandung city as the capital of West Java Prvince.

Locations of theft in Bandung have a relationship and
affect each others. The relationship between location of crime
can be described by semivariogram model. A random variable
for this case is loss value that caused by theft. The goal of this
research is to determine the best model that represent the
spread of loss value. This model is expected to provide an
overview the spread of crime and give recomendation for
police to develop a strategy for prevention the crime in the
near future. The main problem is estimating the parameter
model semivariogram and using robust and non-robust
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semivariogram model that match with characteristics of the
data.

The organization of the paper as follow: we present a non-
robust Matheron model in Section 1l part A. The two robust
models Cressie-Hawkins and Dowd are explained in Section Il
part B. We apply the above models to Bandung’s theft data as
given in Section I11.

Il. SEMIVARIOGRAM MODELING

A. Non-robust Semivariogram
Let {Z(s1), Z(s2), ..., Z(sn)} be a sequence of random
variables with loss locations {s;, si € D < R™} where m is
dimensional space. The spatial relationship between those
random variables can be described by a variance of the
difference between pair of locations that separated by h. The
variance is called semivariogram and can be written as

y(h) = Var[Z(s, + ) - Z(s,)] :%E[Z(si -z @

If the realization of Z(si), i = 1,2,..,n are available then
experimental semivariogram 7(4) can be calculated. In 1965,
Matheron formulated

1 N

) ==

IN(h) & [Z(Si +h)_Z(Si)] 2

where z(s;) and z(s; +h) are a value of location s; and s; +h
respectively and N(h) is the number of location pairs that

separated by h. This estimator is unbiased but not robust.
Genton (1998) points out that the Matheron estimator has a
null breakdown point and an unbounded influence function.
Notice that nowdays the robustness of an estimator is often
evaluated through its breakdown point and its influence
function [11].

That p(k) can be fitted by several semivariogram

models. There are ten models such as: nugget effect, spherical,
exponential, power functions, Gaussian, cubic, hole effect,
cardinal sine, prismato-magnetic, and prismato-gravimetric
[12]. However, this paper uses the three semivariogram
models: exponential, Gauss, and cubic. Semivariogram of the
exponential model is given by

y(h)=C, +C[1—exp(—2jj €)]

where Co, C, and a are parameters model.

This model is commonly used in mining because its
infinite range is associated with a continuous process [13].
However, this model is widely applied in hydrology [14]. For
example in mining, this model was used to observe spatial
correlations of uranium deposits in Novazza, Italy. Brallier
and Chemung also modeled the potential gas production
produced by 1216 gas wells from rock and sandstone deposits
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in Devonian, Barbour, West Virginia by an exponential model
[15]. In hydrology, this model can describe the water content
in wells with a certain depth on the aquifers of Santa Peter's
sandstone and Mount Simon in Northern Illinois [16].
Semivariogram of Gauss model is given by

(h)=C, + C[l—exp{—(g] ]J 4)

where Co, C, and a are parameters model.

This model has a tendency of parabolic behavior for the
semivariogram value around the origin point (h = 0). This
indicates that the regional variable has quite a small
difference. Gauss models are widely used in petroleum
geostatistics. While semivariogram of cubic model is given by

. c0+c[7(gj_8.75(gj+3_5@5_0.75(2)’],hga -

C,+C ,h>a
The equation of this model is similar to the spherical model.
The characteristic of this model is the rapid rise of the
semivariogram value for close range parameter, then flat for
farter distance from the range. This model can represent
spatial correlations of metal deposits, such as iron and bauxite
deposits in France, uranium deposits in Canada, copper
deposits in Chile, laterite nickel deposits in New Caledonia,
phosphate in Africa, and gold deposits in South Africa [13].
All models always have three parameters say Co (nugget
effect), C (partial sill), and a (range). In practice, Co+C is a
constant value for semivariogram where there is no correlation
between two separation locations, a represents maximum h
where two separation locations still have spatial correlation,
while Co represents microvariability in addition to random
measurement error [17]. Thereafter, Co+C and a are estimated
by least square method. The best estimator obtained by
minimize Sum Square of Error (SSE) between experimental
and the semivariogram model. The best model was chosen
based on the minimum of SSE.

Based on semivariogram model, we can estimate the value
of an unobserved location by Kriging. The value of that
location is formulated by linear combination of all observed
location. Equation of Kriging can be written as

Z(s,) = iiiZ(si) (6)

where s; and s;i are unobserved and observed location
respectively, Z(s;) is random variable in i location and 4; is
Kriging weight on i location. In addition to estimate
unobserved location, Kriging also used to validate the
semivariogram model. One of method that used is Jacknife
Kriging. This method was done by take one observed location
and estimated the value and repeat the steps until all
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observations were estimated. Therefore, SSE Kriging

n

Z(z(s)—z(s )% is calculated for determining the best

semivariogram model.

B. Robust Semivariogram

There are two robust estimator for semivariogram will
used in this papers that are Cressie-Hawkins and Dowd
estimator. Formulation of Cressie-Hawkins is

1 1/2
Jon (h) = Z(N(h» Ch(ZI( +h)—z(s,)| j @)

% % Using the set of power
N(h)  N(h)

transformations proposed by Box and Cox, Cressie-Hawkins

found that the fourth root of y> has a skewness and kurtosis

0.08 and 2.48 respectively (compared with 0 and 3 for the

Gaussian or normal distribution). Formulation of Dowd is

where Ch=0.457 +

2.198
2

7o (h) = === (median (|z(s; + /) - z(s, )|)) (8)

Median can be applied to transformed differences location to
bring them back to the correct scale and adjusted for bias.
Beside that median is ordered statistics that robust with value
is too big or small [18].

I1l. CASE STuDY

The theft data obtained from Kasat Reskrim Polrestabes
Bandung. There are fourteen thefts from March, 4-10 in 2016.
The locations of the theft divided three Bandung’s regions
that are West, East and Central. Loss value that caused by
theft is 21% above 100 million rupiah and 79% between 2-
100 million rupiah. The procedure to analyze the data is
shown at the flowchart in the Fig. 2. This figure explain the
step to find best model of three semivariogram approaches
and Kriging method.

From the Fig. 3 seen that the theft happened in East and
Central Bandung. There are two thefts in East Bandung and
others in Central Bandung. It shows that Central Bandung has
rate of crime rate is higher than others. The distribution of
theft is shows in the Fig. 3. While, the descriptive statistic of
loss value that caused by theft is described in the Table 1.
From the Table 1, mean of loss value in this case around 33
million rupiah. While, the variance of loss value is very large
with the difference between minimum and maximum value is
113 million rupiah. The Fig. 4(a) show that there is not outlier
but it can be said the variability of loss wide enough. It
conduce the distribution is not symmetry as seen in the
skewness value. Positive skewness means almost all of the
data has small value. Negative kurtosis shows that the data
has heterogeneous of loss value.
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TABLE |
DESCRIPTIVE STATISTICS OF LOSS

Input Data Central Data (x10°) Variability Data (x10°)
N i Minimum 2 Sum 469
Deskriptive Statistics Model 25" percentile () 4.96 Range 113
\l/ > 1. Exponential i i
Determine distance lag by 2 Gauss 50" percentile (c) 105 Variance 36,020,000
h s
Sturges approac! N Mean 33.477 Std.Deviation 43.506
\l, > Estimate a by numeric method th . -6
. 75% percentile (qs) 70.110 Skewness 1.263x10
Determine N (h) \1,
v Maximum 115 Kurtosis -0.178x10°®
Calculate y,.(h) , k = 1,2,3 e
1. Matheron
2. Cressie-Hawkins J Yes -
3. Dowd The best model from C was
\l/ choosen e
| Estimate parameter | ¢ .
\l/ | The minimum SSE of all ¢ |
: 1 B
| The best model |
Choose C : ‘l/
| Calculate weight Kriging | -
1. Var(z(s)) e——
2. ?(h) | Estimate I\!)/ss value | = T
3. g (P(W) -
4 a(rmw) | V. | )
5. qs (?(h)) Calculate SSE Kriging

N

a

Fig. 2. Flowchart to find best model of three semivariogram approaches and

Kriging method.
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Fig. 4. (a) The box-plot of loss value, (b) The contour map of loss value with
the horizontal and vertical axis are coordinate of location, and (c) The
experimental semivariogram with the horizontal axis is lag distance h and the
vertical axis is 7(%) . The experimental semivariogram 7(%) are making by

three approaches (Matheron, Cressie-Hawkins, and Dowd).

From Fig. 4(c), there are three semivariogram approaches that
will used to model loss value as described above. Those
approaches are used because the data has some big loss value.

=]

The Fig. 4(c) shows that the three semivariograms has the

Fig. 3. Thefts location in Bandung. There are two symbols that have meanings
theft in Central and East Bandung respectively. The circle mean the highest of
loss value.

The contour map shows that there is a directional influence
on the loss value. The highest loss is located in East Bandung.
Therefore, the loss value decreases to the west direction. There
are two locations have the higest value of loss. That locations
are showed by red colour in the legend.

same pattern from lag one until lag four. Although scale of
7w (B) quite different than the others semivariogram. There is
something unique from 7, (%) on two last lags. There is a
significant increment from lag four to six. It causes the
semivariogram does not look stationary. Here, 7., (%) look
stationary than the others semivariogram.

After y(h) is obtained, several semivariogram models can
be fitted to y(k). First, the parameters of models must be
estimated. There are some candidate of C such as Var(z(s))

(©
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and statistic of (k). The statistics of (k) are Gauss 1.5618 5.80 1.5271
5(h), ¢,(3(h)), q,(5(h)), and q,(5(h)) . The results of estimator Cubic 13.35 15290
for each parameter are presented in TABLE II. In the TABLE Exp R 14.55 1.5100
11(a) shows that only 7,, (k) has C, = 0. This appropriate with 5 | Gauss q32 (1(5(7}’7)) 11.60 2.3863
the graphic of y(h)which begin not in zero value. In j,, (h), Cubic ' 28.15 2.3420
sill, range, and SSE are directly proportional for each model. (a)
The smaller value of sill has the closer range estimates
compared to the others. Selection of the best model is based No Model Co C (x10%) A SSE (x10%)
on the minimum of SSE. Therefore, q,(7(4)) was chosen as
the sill value. From that parameter, there are two models Exp G(h) 075 0-3000
which has minimum SSE. The best models are exponential 1 | Gauss qt) 3;610 125 0.3000
and cubic. However, the best model for },, (h) is exponential. Cubic ' 3.15 0.3000
This model has the simplest equation. Also, the SSE of Exp 3 28 0.1090
exponential and cubic models are not much different. Then, 7(h)
- . 2 | Gauss 4.05 0.1200
the best model of 7,, (%) is 0.2178
Cubic . 9.95 0.1030
A y y h Exp A 2.45 0.1230
7w (1) =9.5x10™ +1.3139x10 {1—exp(—mn 9) 3 | cans a,(y(h)) 365 0.1200
0.1974
Cubic 9.25 0.1190
In the TABLE 1I(b) and (c) show that value of sill and range Exp 5.75 0.0570"
are directly proportional but the SEE value is the opposite. 4 a,(y(h)) 6.35 0.0420
. . Gauss : :
The smaller of sill value result the highest of SSE value. So, 0.3611 .
the value of q,(p(#)) for C is minimizing the SSE of both Cubic & 1540 00410
semivariograms. Based on the minimum of SSE, the model for
Yen (h) is the same with 7,, () . For the same reason, the best | No Model Co C (x10%) a SSE (x10%)
model 7y, (h)is Gauss. Finally, the model of 7., (k) and
. 7o (h) y Veu () Exp i 0.80 15.7050
o (h) are 1 | Gauss qt)(ggl)) 140 15.7040
h Cubic ' 3.55 15.7040
Jeu (h) = 3.6110x10" (1— EXP(—ﬁD (10) Exp B 3.75 8.3610
2 | Gauss 7 () 5.60 7.6800
R " h \? 1.0145
7 (h) =2.7106x10™ | 1—exp| — 39 (112) Cubic 0 13.70 7.5900
' Exp 1.50 14.1317
y(h
TABLE I 3 | Gauss qé (1”7(42)) 2.85 14,3100
THE MODEL RESULTS OF EXPERIMENTAL SEMIVARIOGRAM BY CHANGING Cubi ' 9.25 14.3100
SILL VALUEE OF y(4) FOR EACH APPROCHES; (A) MATHERON, (B) CRESSIE- ubic
HAWKINS, AND () DowD Exp . 10.50 5.1170
4 GO [~ g0 2.9790"
No Model Co (x10%) C (x10%5) a SSE (x10%) Gauss 2.7106 : :
Cubic 21.00 2.9810
Exp 9.50 1.4108 ©
1 Gauss Var(z(s)) 8.00 1.9772 **) model ig chosen_ _
1.8930 *) model with the minimum SSE
Cubic 19.85 2.0241
Exp 445 19501 The model and parameters of three semivariograms are
2 | causs a,(y(h)) 280 12714 presented in TABLE Ill. It shows that }., (%) and 7}, (h)
b 0.95 1.3139 15 L2378 almost have the same value of range than 7, (k).
Exp 8.70 13895 Furthermore, 7, (%) and 7y, (k) also have similar value of C
3 | Gauss 7 (h) 730 1.8657 and SSE. There are something unique between 7, (%) and
Cubic 16032 17.75 1.9229 7o (h) . Both of models have different C, a, and SSE value but
4 | Exp d, (7(%)) 6.55 13227 similar SSE Kriging value. In the Fig. 5, the graph of j,, (h)
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and the model are not really appropiate. The model is
appropiate on first and second of distance lags. This

characteristic is similar to y (%) . The semivariogram value of

two last lag on 7, (k) increase so the model is trying reach
that values. It result two lags in the middle have quite gap
between 7, (%) and the model. Of the three graphs, 7., (h)
and the model looks more appropiate visually. The difference
between the model and ), () is not too much different. The

selection of a good semivariogram approach can be seen from
the data characteristics.

i %10'% ivariogram Matheron oF <101% i Cressie-Hawkins.

05 R 115 D

0 2 4 6 8 0 2 0 2 4 5 ] 1 12
i x10' Semivariogram Dowd

— & — Experimental —3— Model

Fig. 5. The semivariogram model of Matheron, Cressie-Hawkins, and Dowd.
The selected model is fitted to experimental semivariogram respectively. The
horizontal axis is lag distance (h) and the vertical axis is semivariogram value.

TABLE 1l
THE BEST MODEL OF SEMIVARIOGRAM MATHERON, CRESSIE-HAWKINS, AND
DowD WITH THE PARAMETERS VALUE AND SSE KRIGING

SSE
. Co o) SSE >t
Semiv. Model 15 15 a 0 Kriging
(x10%)  (x10%) (x10%) (x10%)
Matheron Exp 095 13139 445 12501 2.8729
CH 0 03611 575 0.0570 22.3890
Dowd Gauss 27106 890 29790 22.1800
From the TABLE IIl, the estimator of C for each

semivariogram are 25th percentile and 75th percentile. The
results of range parameter reach 4.45 until 8.90 kilometers.
This parameters show the influence area of theft.

IV. DiscussiON AND CONCLUSION

The parameter C for loss value data of 7, (#) is q,(7(h))=
1.3139x 10" and a reaches 4.45 kilometers. While, the
parameter C for j, (k) and 7, (k) are q,(7(h)). That value
are 0.3611x 10 and 2.7106 x 10% respectively. The value of

SARI ET AL.

a for both semivariograms respectively are 5.75 and 8.9
kilometers. The best semivariogram models for the data of
thefts are exponential and Gauss. This models have more
simpler form then cubic model. From the three parameters, a
give the important information for the distance range of the
theft. In this case radius of a around 5 kilometers. That means
the theft with the same value of loss can be occurs within
radius of 5 kilometers.
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