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Abstract—Research in criminality is sufficiently developed but 

mathematical statistics analysis has little role in this field. In 
Indonesia, this research is mostly done in descriptive statistics 
and simple modeling. The population development has an effect 
on social and economy. Consequently, the crime rate increases 
with the compliance of people's living needs. In this research, we 
focus on analyzing criminal loss caused by theft. The loss is 
modeled by an isotropic semivariogram model. Here, we consider 
the non-robust Matheron model and the robust Cressie-Hawkins 
and Dowd models to analyze semivariogram of the crime. The 
best model is determined from the variance of loss and statistics 
of experimental semivariogram such as mean, first quartile, 
median, and third quartile. Data with enough high loss has 
candidate of sill that is first and third quartile of experimental 
semivariogram. We apply the analysis to Bandung’s theft data 
and corresponding model is exponential with a range of 4.45 
kilometers. Through this model, we can predict theft having 
significant losses at the range of 4.45 kilometers. This 
information can be a recommendation for the police to raise 
awareness for locations around 4.45 kilometers from the location 
of theft. 
 

Index Terms—Cressie-Hawkins, Crime, Dowd, Loss Value, 
Matheron, Range, Sill, Theft 
 

I. INTRODUCTION 
crime is defined as an act that breaches the criminal laws 
of an authority (such as a state or country). Crimes can be 

carried out against individuals, organizations, the state or 
involve the destruction of property [1]. Everyone has the same 
chance to experience the consequences of a crime such as 
theft. The necessities of life that must be obtained and the 
difficulty of getting job make some people will do anything 
even to commit a crime. Crime is one of interesting social 
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problems to discussed and studied further. It is proved by there 
were some researches about crime since 19 century. In 1983, 
Guerry analyzed the distribution of crimes according to the 
poverty, the lack in education and the density of population of 
the departments but he concluded that these variables are not 
directly causes of crime occurrence [2]. Moreover, there are 
some researches about crimes used some method such as 
variogram, Poisson Kriging, self-exciting point, fuzzy time 
series, time series modeling, spatial model, regression, and 
binomial negative. 

Car-related thefts in Estonia, Latvia, and Lithuania in 2000 
was analyzed used variogram to inform about the scales of 
variation in offense, social, and economic data. Area-to-area 
and Area-to-point Possion Kriging were used to filter the noise 
caused by the small number problem [3]. In 2011, Mohler et 
al. proposed self-exciting point processes can be adapted for 
the purpose of crime modeling and were well suited to capture 
the spatial-temporal clustering patterns observed in crime data. 
The results of their research was illustrated how crime hotspot 
maps can be improved using the self-exciting point process 
framework [4]. Shrivastav and Ekata used fuzzy time series 
for forecasting of crime. Here, the historical data of crime 
incidents (cases of murder in Delhi City) was used to build an 
test their model. This model could be used as a tool for 
effective crime prevention strategies [5]. They also modeled 
historical crime data for forecasting of crime in India. The 
result show that ARIMA(1,1,1) was the best model [6]. In 
2015, spatial with GIS techniques was used to analyze factor 
responsible for spread of crime activities in Akure, Nigeria. 
GIS technique is a tool for detecting crime pattern, occurrence, 
prediction, and commensurate measures [7]. In Indonesia, the 
research of crime had not developed yet, the data of crime 
only explore by showing the descriptive statistics so the 
historical crime data have been explored optimally. 
Development of mathematical statistics also have not role 
much in crime analysis. In Bandar Lampung, the crime rate 
based on the police department’s record is presented by a 
quantitative approach (2007-2011). The peak of crime rate 
reached 24.2 in 2009. The crime rate of theft had a fairly 
crime rate compared to other types of crimes such as: murder, 
fraud, torture, gambling, extortion, and rape [8]. Meanwhile, 
Delia analyzed causes of fear of crime on theft case among 
housewives. She used regression to determine four factors that 
caused the fear of crime. Those factors were knowledge about 
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crime, vulnerability becomes victim of crime, the state of the 
neighborhood, and perseption of law system. The Regression 
model represented that these four factors significantly 
influence with fit model of 54.2% [9].  

In this research, spatial analysis is used to explore 
Bandung’s theft data. Bandung is the capital of West Java 
province in Indonesia. Since the Dutch colonial period, 
Bandung has strong link and economic dependence with 
Jakarta, the capital of Indonesia. As the population grew, 
Bandung became a tourist destination and an exclusive resort 
area for plantation owners and business people from Batavia. 
This introduces the first wave of cultural industry in the city 
with the European lifestyle cafes, restaurants, shops, and art-
deco hotels. This led to Bandung being named "Paris van 
Java" [10]. Moreover, Bandung is one of the most populated 
cities in the world, especially: Cicadas, Kiaracondong, and 
Bandung kulon. The density of population reached 13,000 per 
square kilometers. The map of West Java province, Indonesia 
is presented in the Fig. 1. The population development has an 
effect on social and economy. Consequently, the crime rate 
increases with the compliance of the people's living needs. 
One of the most common crime types in the city is theft.  

 

 

 
Fig.  1. The map of Bandung city as the capital of West Java Prvince.  
 

Locations of theft in Bandung have a relationship and 
affect each others. The relationship between location of crime 
can be described by semivariogram model. A random variable 
for this case is loss value that caused by theft. The goal of this 
research is to determine the best model that represent the 
spread of loss value. This model is expected to provide an 
overview the spread of crime and give recomendation for 
police to develop a strategy for prevention the crime in the 
near future. The main problem is estimating the parameter 
model semivariogram and using robust and non-robust 

semivariogram model that match with characteristics of the 
data. 

The organization of the paper as follow: we present a non-
robust Matheron model in Section II part A. The two robust 
models Cressie-Hawkins and Dowd are explained in Section II 
part B. We apply the above models to Bandung’s theft data as 
given in Section III.  

II. SEMIVARIOGRAM MODELING 

A. Non-robust Semivariogram  
Let {Z(s1), Z(s2), ..., Z(sn)} be a sequence of random 

variables with loss locations {si, si ∈ D ⊆ Rm} where m is 
dimensional space. The spatial relationship between those 
random variables can be described by a variance of the 
difference between pair of locations that separated by h . The 
variance is called semivariogram and can be written as  
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If the realization of Z(si), i = 1,2,...,n are available then 
experimental semivariogram ˆ( )γ h  can be calculated. In 1965, 
Matheron formulated  
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where ( )iz s and ( )iz s h+  are a value of location is  and is h+  
respectively and ( )N h  is the number of location pairs that 
separated by h . This estimator is unbiased but not robust. 
Genton (1998) points out that the Matheron estimator has a 
null breakdown point and an unbounded influence function. 
Notice that nowdays the robustness of an estimator is often 
evaluated through its breakdown point and its influence 
function [11]. 

 That ˆ( )γ h  can be fitted by several semivariogram 
models. There are ten models such as: nugget effect, spherical, 
exponential, power functions, Gaussian, cubic, hole effect, 
cardinal sine, prismato-magnetic, and prismato-gravimetric 
[12]. However, this paper uses the three semivariogram 
models: exponential, Gauss, and cubic. Semivariogram of the 
exponential model is given by  

 

0ˆ( ) 1 exp hγ h C C
a

  = + − −  
                                              

(3) 

where C0, C, and a are parameters model. 
This model is commonly used in mining because its 

infinite range is associated with a continuous process [13]. 
However, this model is widely applied in hydrology [14]. For 
example in mining, this model was used to observe spatial 
correlations of uranium deposits in Novazza, Italy. Brallier 
and Chemung also modeled the potential gas production 
produced by 1216 gas wells from rock and sandstone deposits 
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in Devonian, Barbour, West Virginia by an exponential model 
[15]. In hydrology, this model can describe the water content 
in wells with a certain depth on the aquifers of Santa Peter's 
sandstone and Mount Simon in Northern Illinois [16]. 

Semivariogram of Gauss model is given by 
 

2
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where C0, C, and a are parameters model.  
This model has a tendency of parabolic behavior for the 
semivariogram value around the origin point (h = 0). This 
indicates that the regional variable has quite a small 
difference. Gauss models are widely used in petroleum 
geostatistics. While semivariogram of cubic model is given by 
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The equation of this model is similar to the spherical model. 
The characteristic of this model is the rapid rise of the 
semivariogram value for close range parameter, then flat for 
farter distance from the range. This model can represent 
spatial correlations of metal deposits, such as iron and bauxite 
deposits in France, uranium deposits in Canada, copper 
deposits in Chile, laterite nickel deposits in New Caledonia, 
phosphate in Africa, and gold deposits in South Africa [13]. 

 All models always have three parameters say C0 (nugget 
effect), C (partial sill), and a (range). In practice, C0+C is a 
constant value for semivariogram where there is no correlation 
between two separation locations, a represents maximum h 
where two separation locations still have spatial correlation, 
while C0 represents microvariability in addition to random 
measurement error [17]. Thereafter, C0+C and a are estimated 
by least square method. The best estimator obtained by 
minimize Sum Square of Error (SSE) between experimental 
and the semivariogram model. The best model was chosen 
based on the minimum of SSE.  

Based on semivariogram model, we can estimate the value 
of an unobserved location by Kriging. The value of that 
location is formulated by linear combination of all observed 
location. Equation of Kriging can be written as  
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where s0 and si are unobserved and observed location 
respectively, Z(si) is random variable in i location and λi is 
Kriging weight on i location. In addition to estimate 
unobserved location, Kriging also used to validate the 
semivariogram model. One of method that used is Jacknife 
Kriging. This method was done by take one observed location 
and estimated the value and repeat the steps until all 

observations were estimated. Therefore, SSE Kriging 
2

1
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n

i i
i

z s z s
=

−∑ is calculated for determining the best 

semivariogram model. 

B. Robust Semivariogram  
There are two robust estimator for semivariogram will 

used in this papers that are Cressie-Hawkins and Dowd 
estimator. Formulation of Cressie-Hawkins is  
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where 0.4941 0.0450.457
( ) ( )

Ch
N h N h

= + + . Using the set of power 

transformations proposed by Box and Cox, Cressie-Hawkins 
found that the fourth root of 2

1χ  has a skewness and kurtosis 
0.08 and 2.48 respectively (compared with 0 and 3 for the 
Gaussian or normal distribution). Formulation of Dowd is 
 

( )( )22.198ˆ ( ) ( ) ( )
2
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Median can be applied to transformed differences location to 
bring them back to the correct scale and adjusted for bias. 
Beside that median is ordered statistics that robust with value 
is too big or small [18]. 

III. CASE STUDY 
The theft data obtained from Kasat Reskrim Polrestabes 

Bandung. There are fourteen thefts from March, 4-10 in 2016. 
The locations of the theft divided three Bandung’s regions 
that are West, East and Central. Loss value that caused by 
theft is 21% above 100 million rupiah and 79% between 2-
100 million rupiah. The procedure to analyze the data is 
shown at the flowchart in the Fig. 2. This figure explain the 
step to find best model of three semivariogram approaches 
and Kriging method.  
 From the Fig. 3 seen that the theft happened in East and 
Central Bandung. There are two thefts in East Bandung and 
others in Central Bandung. It shows that Central Bandung has 
rate of crime rate is higher than others. The distribution of 
theft is shows in the Fig. 3. While, the descriptive statistic of  
loss value that caused by theft is described in the Table 1. 
From the Table 1, mean of loss value in this case around 33 
million rupiah. While, the variance of loss value is very large 
with the difference between minimum and maximum value is 
113 million rupiah. The Fig. 4(a) show that there is not outlier 
but it can be said the variability of loss wide enough. It 
conduce the distribution is not symmetry as seen in the 
skewness value. Positive skewness means almost all of the 
data has small value. Negative kurtosis shows that the data 
has heterogeneous of loss value. 
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Fig. 2. Flowchart to find best model of three semivariogram approaches and 
Kriging method. 
 
 

 
Fig. 3. Thefts location in Bandung. There are two symbols that have meanings 
theft in Central and East Bandung respectively. The circle mean the highest of 
loss value. 
 

The contour map shows that there is a directional influence 
on the loss value. The highest loss is located in East Bandung. 
Therefore, the loss value decreases to the west direction. There 
are two locations have the higest value of loss. That locations 
are showed by red colour in the legend. 

 
 
 
 
 

TABLE I 
DESCRIPTIVE STATISTICS OF LOSS 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
(c) 

Fig.  4. (a) The box-plot of loss value, (b) The contour map of loss value with 
the horizontal and vertical axis are coordinate of location, and (c) The 
experimental semivariogram with the horizontal axis is lag distance h and the 
vertical axis is ˆ( )γ h . The experimental semivariogram ˆ( )γ h  are making by 
three approaches (Matheron, Cressie-Hawkins, and Dowd). 
 
From Fig. 4(c), there are three semivariogram approaches that 
will used to model loss value as described above. Those 
approaches are used because the data has some big loss value. 
The Fig. 4(c) shows that the three semivariograms has the 
same pattern from lag one until lag four. Although scale of 
ˆ ( )Mγ h  quite different than the others semivariogram. There is 

something unique from ˆ ( )Dγ h  on two last lags. There is a 
significant increment from lag four to six. It causes the 
semivariogram does not look stationary. Here, ˆ ( )CHγ h  look 
stationary than the others semivariogram.  

After ˆ( )γ h  is obtained, several semivariogram models can 
be fitted to ˆ( )γ h . First, the parameters of models must be 
estimated. There are some candidate of C  such as ( ( ))Var z s

 

𝐶0 = 0 ; 0.95 

Start 

Input Data 

Deskriptive Statistics 

Determine distance lag by 
Sturges approach  

Determine 𝑁(ℎ) 

Estimate parameter  

Calculate 𝛾�𝑘(ℎ) ,  𝑘 = 1,2,3 

1. Matheron 
2. Cressie-Hawkins 
3. Dowd 

  

Choose 𝐶 : 

1.  𝑉𝑎𝑟�𝑧(𝑠)� 
2.  𝛾�̅(ℎ) 
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4. 𝑞2 � 𝛾�(ℎ)� 
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No 

Estimate 𝑎 by numeric method  

Minimum 
SSE 
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The best model from 𝐶 was 
choosen   

Model: 

1. Exponential 
2. Gauss 
3. Cubic 

  

Calculate weight Kriging  

Estimate loss value 

Finish 

Calculate SSE Kriging 

The best model 

The minimum SSE of all 𝐶  

𝛼 

Central Data (x106) Variability Data (x106) 

Minimum 2 Sum 469 

25th percentile (q1) 4.96 Range 113 

50th percentile (q2) 10.5 Variance 36,020,000 

Mean 33.477 Std.Deviation 43.506 

75th percentile (q3) 70.110 Skewness 1.263x10-6 

Maximum 115 Kurtosis -0.178x10-6 

(c) 
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and statistic of ˆ( )γ h . The statistics of ˆ( )γ h  are 

1 2ˆ ˆ ˆ( ), ( ( )), ( ( )),γ h q γ h q γ h and 3 ˆ( ( ))q γ h . The results of estimator 
for each parameter are presented in TABLE II. In the TABLE 
II(a) shows that only ˆ ( )Mγ h has 0 0C ≠ . This appropriate with 
the graphic of ˆ( )γ h which begin not in zero value. In ˆ ( )Mγ h , 
sill, range, and SSE are directly proportional for each model. 
The smaller value of sill has the closer range estimates 
compared to the others. Selection of the best model is based 
on the minimum of SSE. Therefore, 1 ˆ( ( ))q γ h  was chosen as 
the sill value. From that parameter, there are two models 
which has minimum SSE. The best models are exponential 
and cubic. However, the best model for ˆ ( )Mγ h  is exponential. 
This model has the simplest equation. Also, the SSE of 
exponential and cubic models are not much different. Then, 
the best model of ˆ ( )Mγ h  is 

 
14 14ˆ ( ) 9.5 10 1.3139 10 1 exp

4.45M
hγ h   = × + × − −  

       
(9) 

 
In the TABLE II(b) and (c) show that value of sill and range 
are directly proportional but the SEE value is the opposite. 
The smaller of sill value result the highest of SSE value. So, 
the value of 3 ˆ( ( ))q γ h  for C is minimizing the SSE of both 
semivariograms. Based on the minimum of SSE, the model for 
ˆ ( )CHγ h  is the same with ˆ ( )Mγ h . For the same reason, the best 

model ˆ ( )Dγ h is Gauss. Finally, the model of ˆ ( )CHγ h  and 
ˆ ( )Dγ h  are 

 
14ˆ ( ) 3.6110 10 1 exp

5.75CH
hγ h   = × − −  

          
(10)

 
2

15ˆ ( ) 2.7106 10 1 exp
8.9D
hγ h

    = × − −               

(11) 

 
TABLE II 

THE MODEL RESULTS OF EXPERIMENTAL SEMIVARIOGRAM BY CHANGING 
SILL VALUEE OF ˆ( )γ h  FOR EACH APPROCHES; (A) MATHERON, (B) CRESSIE-

HAWKINS, AND (C) DOWD 

No Model C0 (x1015) C (x1015) a SSE (x1030) 

1 

Exp 

0.95 

( ( ))Var z s  
1.8930 

9.50 1.4108 

Gauss 8.00 1.9772 

Cubic 19.85 2.0241 

2 

Exp 

1 ˆ( ( ))q γ h  
1.3139 

4.45   1.2501** 

Gauss 4.80 1.2714 

Cubic 11.5  1.2378* 

3 

Exp 
ˆ ( )γ h  

1.8032 

8.70 1.3895 

Gauss 7.30 1.8657 

Cubic 17.75 1.9229 

4 Exp 2 ˆ( ( ))q γ h  6.55 1.3227 

Gauss 
1.5618 5.80 1.5271 

Cubic 13.35 1.5290 

5 

Exp 

3 ˆ( ( ))q γ h  
2.4677 

14.55 1.5100 

Gauss 11.60 2.3863 

Cubic 28.15 2.3420 
(a) 

No Model C0  C (x1015) A SSE (x1030) 

1 

Exp 

0 

1 ˆ( ( ))q γ h  
0.0610 

0.75 0.3000 

Gauss 1.25 0.3000 

Cubic 3.15 0.3000 

2 

Exp 
ˆ ( )γ h  

0.2178 

2.8 0.1090 

Gauss 4.05 0.1200 

Cubic 9.95 0.1030 

3 

Exp 

2 ˆ( ( ))q γ h  
0.1974 

2.45 0.1230 

Gauss 3.65 0.1200 

Cubic 9.25 0.1190 

4 

Exp 

3 ˆ( ( ))q γ h  
0.3611 

5.75    0.0570** 

Gauss 6.35 0.0420 

Cubic 15.40  0.0410* 

(b) 

No Model C0  C (x1015) a SSE (x1030) 

1 

Exp 

0 

1 ˆ( ( ))q γ h  
0.0481  

0.80 15.7050 

Gauss 1.40 15.7040 

Cubic 3.55 15.7040 

2 

Exp 
ˆ ( )γ h  

1.0145 

3.75 8.3610 

Gauss 5.60 7.6800 

Cubic 13.70 7.5900 

3 

Exp 

2 ˆ( ( ))q γ h  
0.1742 

1.50 14.1317 

Gauss 2.85 14.3100 

Cubic 9.25 14.3100 

4 

Exp 

3 ˆ( ( ))q γ h  
2.7106 

10.50 5.1170 

Gauss 8.90   2.9790** 

Cubic 21.00 2.9810 
(c) 

**) model is chosen  
*) model with the minimum SSE 
 

The model and parameters of three semivariograms are 
presented in TABLE III. It shows that ˆ ( )CHγ h  and ˆ ( )Mγ h  

almost have the same value of range than ˆ ( )Dγ h . 

Furthermore, ˆ ( )Mγ h  and ˆ ( )Dγ h also have similar value of C 

and SSE. There are something unique between ˆ ( )CHγ h  and 
ˆ ( )Dγ h . Both of models have different C, a, and SSE value but 

similar SSE Kriging value. In the Fig. 5, the graph of ˆ ( )Mγ h
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and the model are not really appropiate. The model is 
appropiate on first and second of distance lags. This 
characteristic is similar to ˆ ( )Dγ h . The semivariogram value of 

two last lag on ˆ ( )Dγ h  increase so the model is trying reach 
that values. It result two lags in the middle have quite gap 
between ˆ ( )Dγ h  and the model. Of the three graphs, ˆ ( )CHγ h  
and the model looks more appropiate visually. The difference 
between the model and ˆ ( )CHγ h  is not too much different. The 
selection of a good semivariogram approach can be seen from 
the data characteristics. 

 

 
 

Fig.  5. The semivariogram model of Matheron, Cressie-Hawkins, and Dowd. 
The selected model is fitted to experimental semivariogram respectively. The 
horizontal axis is lag distance (h) and the vertical axis is semivariogram value. 

 
TABLE III 

THE BEST MODEL OF SEMIVARIOGRAM MATHERON, CRESSIE-HAWKINS, AND 
DOWD WITH THE PARAMETERS VALUE AND SSE KRIGING 

Semiv. Model C0  
(x1015) 

C  
(x1015) a SSE 

(x1030) 

SSE 
Kriging 
(x1017) 

Matheron Exp 0.95 1.3139 4.45 1.2501 2.8729 

CH 0 0.3611 5.75 0.0570 22.3890 

Dowd Gauss 2.7106 8.90 2.9790 22.1800 
 
From the TABLE III, the estimator of C for each 
semivariogram are 25th percentile and 75th percentile.  The 
results of range parameter reach 4.45 until 8.90 kilometers. 
This parameters show the influence area of theft. 

IV. DISCUSSION AND CONCLUSION 

The parameter C for loss value data of ˆ ( )Mγ h  is ( )1 ˆ( )q γ h = 
1.3139× 1015  and a reaches 4.45 kilometers. While, the 
parameter C for ˆ ( )CHγ h  and ˆ ( )Dγ h  are ( )3 ˆ( )q γ h . That value 
are 0.3611× 1015 and 2.7106× 1015 respectively. The value of 

a for both semivariograms respectively are 5.75 and 8.9 
kilometers. The best semivariogram models for the data of 
thefts are exponential and Gauss. This models have more 
simpler form then cubic model. From the three parameters, a 
give the important information for the distance range of the 
theft. In this case radius of a around 5 kilometers. That means 
the theft with the same value of loss can be occurs within 
radius of 5 kilometers. 
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