
Vol.13/No.1 (2021) INTERNETWORKING INDONESIA JOURNAL 3

 ISSN: 1942-9703 / CC BY-NC-ND

Arko Djajadi. Raharja University in Tangerang City, Indonesia. (e-mail:
arkodjajadi@raharja.info).

Nanang Sutisna. Raharja University in Tangerang City, Indonesia. (e-mail:

nanang.sutisna@raharja.info)

Abstract— Internet usage is increasing unprecedentedly and is

directly facilitating the development of the entire digital world

especially web-based applications. Unfortunately, web-based

applications are becoming common targets for cyber-attacks in

the form of sensitive data leaks through broken authentication,

cross-site scripting, and SQL Injection. An injection attack with

SQL injection is top-ranked among the “most critical” web-based

application vulnerabilities. Sensitive data leaks can be initiated

due to security holes that can be exploited to perform SQL

injection attacks. This paper intends to address and showcase

these security issues toward an online and legitimate target called

eArsip. eArsip is a web-based application for recording and

storing documents such as incoming letters, outgoing letters,

decision letters, and other digitized documents. Since eArsip is

freely accessible to the public, it is considered necessary to test its

security to prevent data leakage with the possibility that it

contains some sensitive and confidential archives. Penetration

testing is performed using a black-box method in conjunction

with SQL Injection. The authors adopt seven phases when

conducting penetration testing, starting with planning,

reconnaissance, exploration, vulnerability assessment,

exploitation, reporting, and recommendation. Within 30 minutes

of the attack using SQL Injection, the eArsip web-based

application was successfully penetrated without prior credentials.

Based on the results of the penetration tests performed, it has

been demonstrated how dangerous the SQL Injection attack is

for less guarded web and database applications. Data from web

applications was successfully dumped using tools without the

need for special knowledge. The test findings of the eArsip web-

based application weaknesses and vulnerabilities are used to

demonstrate the imminent risks of data leakage and to alert the

system administrators. Finally, some alternative solutions are

suggested to make the eArsip web-based applications more

secure.

Index Terms— Data Dump, Data Leak, Penetration Test, SQL

Injection

I. INTRODUCTION

yber-attack hacking tools are evolving rapidly and are

easier to use than before, even for newbies without

special skills. The devices provide comprehensive features, are

freely available online, and are easily accessible to the public.

These facts contrast the slower-growing technical capabilities

gained to keep up with and defend against new threats.

Assessing the levels of defence against cyber-attack by

penetration testing all online applications in a live

environment is becoming mandatory [1]. This practice can

determine a system for unexposed weaknesses and security

holes [2], [3].

A faster, easier, and cheaper internet access directly drives

the development of the entire digital world. In daily activities,

web services, mobile devices, and the Internet of Things are

adopted widely by governments and businesses to provide

better services to the public and customers [4]. The internet is

a huge network with thousands of giant data centres

worldwide. Each data centre hosts virtually any number of

web applications [5]. Web applications have been one of the

preferred targets for cyber-attacks through injection, sensitive

data leaks, broken authentication, cross-site scripting, and

more.

Among the top “most critical” vulnerabilities in a web-

based application is injection attack, especially SQL Injection

attack [6], [7], which was first discovered in 1998. SQL

Injection attack has always been a frightening threat to web

applications [8] as they can take advantage of security holes in

a web application's program code. The technique commonly

used is to insert a malicious SQL query into the variables on a

web page [9], [10]. Unsanitized variable values submitted via

web forms, cookies, or other input parameters within a web-

based application code can easily be exploited by SQL

Injection attacks [11], [12]. This attack aims to gain access to

the database connected to the web application [13].

The authors intend to demonstrate this ever-evolving danger

toward an actual web application that demands more security

attention as it contains essential and sensitive records of local

government data. This showcase can be similarly replicated

against other web applications worldwide to reveal their

unintended holes. After requesting permission, the authors use

the eArsip web application at http://cilegon.go.id/earsip as an

attack target. It’s one of the web applications owned and

managed by the City of Cilegon government, where the

authors have completely no knowledge of its internal details

nor access. The eArsip web application is presumably used to

record and store documents in incoming letters, outgoing

letters, decision letters, and other digitized documents required

Penetration Testing: Dumping Data from Web

Application Using SQL Injection Attack

(Case Study: eArsip)

Arko Djajadi and Nanang Sutisna

C

4 INTERNETWORKING INDONESIA JOURNAL DJAJADI & SUTISNA

by a local government. Since eArsip is freely accessible to the

public with proper credentials, it is considered necessary to

test its security to prevent data containing some sensitive and

confidential archives from leaking. Through SQL Injection,

the authors intend to blindly extract the data only, even though

once access is gained, it is possible to manipulate the data in

the database and even destroy the database itself [14], [15],

[16], [17]. The main difference and contribution here are that

the authors systematically show the process and data acquired

to alert local governments to take necessary steps to secure

their data and applications with their web applications.

Penetration test results are feedback to the local governments

for corrective actions toward their web applications. This

research is considered relevant and important as local and

central governments try to provide as many online services as

needed to their citizens. Despite their good intention to

provide direct online services, many of those online services

failed to protect sensitive data. Recent occurrences such data

breach on data breaches are, for example, the data leakage of

279 million participants of the National Health Care and

Social Security Agency (BPJS Kesehatan) [18] and the

defacing of BSSN web [19]. There is no secure information

system in the world since the websites of the FBI, NASA, and

CIA have fallen victim to hackers. The sole solution is

periodic security audits or penetration tests.

II. RELATED WORK

Harmandeep Singh et al. describe penetration testing and

the methodology used to implement it. The study also

describes tools and techniques commonly used to gather

information and assess vulnerabilities. Their study enables

them to analyze the penetration testing framework to find

weaknesses and create patches that fill and enhance the

security of the system, network, or application [20].

Pooja and Monica reviewed different types of SQL

injection attacks. This article also discusses various techniques

for detecting and preventing SQL injection. The strengths and

weaknesses of each technique are discussed in detail [13].

 Alde Alanda et al. performed SQL injection tests on ten

randomly selected web applications. The research uses the

Penetration Test Execution Standard (PTES), which consists

of seven main steps and uses the tools available in Kali Linux.

Based on the research results, 80% of websites tested are still

vulnerable to SQL injection attacks [9].

 Adamu Bin Ibrahim and Shri Kant demonstrated how

easy it is to identify and exploit web application security

vulnerabilities with the Acunetix scanner application.

Acunetix WVS is a tool designed to find security

vulnerabilities in web applications that can be used to access

databases by exploiting many vulnerabilities, such as SQL

Injection [21].

Agung Tri Laksono and Joko Dwi Santoso performed

security tests on the SMKN 1 Pangandaran web application,

which can be found at http://cbt.smkn1pangandaran.sch.id.

The tests were performed using OWASP's ZAP tool with SQL

injection technique. Based on the research results, the SMKN

1 Pangandaran web application was found to have a security

vulnerability in the form of SQL injection on the login page.

The author suggests filtering the login process and using the

prepared declaration function provided by PHP [22].

Ramya Dharam and Sajjan G. Shiva proposed and evaluated

a performance monitoring technique to detect and prevent

tautology-based SQL Injection Attacks (SQLIA) against web

applications. The proposed technique monitors the

application's behaviour on the production server to identify

tautology-based SQLIA attempts [23].

Igor Tasevsky and Kire Yakimoski demonstrated different

types of SQL injection attacks. The SQL injection attack is

executed on a web application deployed in a simulated

environment using KaliLinux's sqlmap tool. This study also

discusses various security mechanisms that can be used to

prevent SQL injection attacks [24].

The main difference between the previous related work to

the authors’ work is that the authors describe and demonstrate

the detail of gaining access to and dumping sensitive data to

build awareness and alert the system administrator of the

danger. This work can be replicated to every other web

application as necessary.

There are three methods you can use to perform penetration

testing. The methodologies used are black box, white box and

gray box penetration testing [25], [26], [27]. Below is a

description of each method :

1) Black Box Testing: A test method in which the testers

have no information about the internal or target structure.

They need to check for interface errors, flaws, or

omissions in system functionality. This technique is

similar to a blind test and a procedure used by real

attackers when they do not know any information about

the target network.

2) White Box Testing: The testers have complete

information about the target, including paths, credentials,

addresses, procedures, protocols, and other information

used in the organization's network. Testers typically work

with developers as part of a team to perform these tests.

All of the necessary information is provided to the team

before testing.

3) Gray Box Testing: Gray box testing is a combination of

black-box testing and white box testing where the testers

have partial information about the internal working of the

target. However, testers must gather the necessary

additional information on their own before performing the

test.

III. METHODOLOGY

A. Penetration Testing Methodologies

In this study, the authors apply the Black Box Testing

method because the authors have no information regarding the

internal working of the target. The authors explore any flaws

or omissions in system functionality to gain access to the

system.

B. Penetration Testing Phases

There is no standard rule for performing a penetration test.

Vol.13/No.1 (2021) INTERNETWORKING INDONESIA JOURNAL 5

 ISSN: 1942-9703 / CC BY-NC-ND

However, every tester has to go through three phases:

Reconnaissance, Execution, and Discovery. These three

phases are the basis of every penetration test, but these phases

can be broken down into sub-phases to make it easier for the

tester to achieve their goal. In this study, the authors divide

these phases into seven, as professional penetration testers

commonly prefer them. These seven phases can be seen in

Fig. 1.

Below is a description of each testing phase:

Planning: The scope of the test is determined during the

planning phase. The scope of the test contains information

about the system to be tested, how the test will be performed,

who will perform the test, when the test will be performed,

and what benefits the organization will gain.

Reconnaissance: Once the test scope is created during the

planning phase, the next step is to collect as much information

as possible related to the target needed by the testing process.

Identifying network status, IP address range, operating system,

open ports, DNS, DHCP, domain names, website map, and

other information of interest gives testers a good chance of

penetrating the target. Port scans, host fingerprints, network

mappings, and network enumeration processes are also

frequently utilized during this phase.

Exploration: In this phase, further investigation will be

conducted based on the information obtained during the

reconnaissance phase. Suppose that testers perform more

detailed network and system scans and successfully reveal

network devices, firewall rules, user accounts, input

parameters sent to a web application, and so on to begin

further steps.

Vulnerability Assessment: Vulnerability is defined as a

weakness in a system that opens the door for cyberattacks.

Vulnerability assessment is calculating and ranking a system's

vulnerability level.

Exploitation: This is the core phase of penetration testing. In

this phase, the testers attempt to gain access, control and

exploit the target using the vulnerability information obtained

in the previous phases.

Reporting and Recommendation: The final stage is to

prepare a report on the tests that the testers have performed.

This is especially useful for white box testing by testers and

developers. In the case of black-box testing, it is up to the

testers to report to the target owner. This penetration test

document contains all the information obtained from the

beginning to the end of the testing process, especially

regarding the weaknesses and flaws of the system. In addition,

recommendations regarding what needs to be done to fix the

system’s security vulnerabilities are also presented.

C. Location and Tools

 The penetration test is carried out in Cilegon, Indonesia,

against its eArsip web application. It uses commonly available

tools such as zenmap for network scanning and sqlmap for

injecting SQL attacks toward eArsip.

IV. RESULTS AND DISCUSSION

A. Planning and Scope of The Test

This research analyzes an existing and operational web

application called eArsip to determine its hidden vulnerability

using the SQL Injection attack. The main objective of the

penetration test is to dump tables from the database within the

target web application into CSV files to demonstrate its

security holes.

B. Reconnaissance

The authors use two approaches to gather information about

the target in this step. The first approach is by using tools and

the second approach is by manual processes. The device used

is Zenmap to scan ports. The manual process is to create a

website map so that the authors can understand the overall

flow and functionality of the website.

The port scan results are surprising as up to 999 ports are

open out of 1000 scanned ports. Based on the results of the

port analysis, the possibility of a security breach is very high

because the more open ports, the more likely it is to attack. A

summary of the port analysis that was performed can be seen

in Fig. 2.

To know the web application's functionality, it can be done

by going through all available web pages and manually

navigating from the main page. Based on the manual browsing

method, the information obtained is that some web pages have

URL parameters where there is a very high risk of security

vulnerabilities that SQL Injection can exploit. The website

map can be illustrated as shown in Fig. 3.

Fig. 1. Penetration Testing Phases

6 INTERNETWORKING INDONESIA JOURNAL DJAJADI & SUTISNA

C. Exploration

Since this study focuses only on SQL Injection, we need to

take a closer look at the web pages that contain the POST and

URL parameters based on the information gathered during the

previous phases. The identification of the parameter name on

each page is made manually using the browser's "Inspect

Element" feature, as shown in Fig. 4 and 5, for Login Page

and Search News Page, both having a POST method. The

exploration results are shown in Table 1, where the web pages,

parameters names, and method types are identified and listed.

D. Vulnerability Assessment

In this phase, the authors determine the vulnerability of

each web page based on the information from the findings in

the previous phase. The vulnerability assessment process is

performed using the sqlmap tool.

1) Login Page Vulnerability Assessment: Based on the

analysis using sqlmap, we found that the login page has

no vulnerability for performing SQL injection (Fig. 6,

bottom three lines).

The command to extract this vulnerability is:

Fig. 2. Port Scan Result (Host Details)

Fig. 3. Site Map of eArsip Using Manual Browsing

TABLE I

EXPLORATION RESULTS

Web Page Parameter Name Type

Login login, password POST

Next/Prev News Page keyword, halaman GET

Search News keyword POST

Read Single News

Page

dtl, id GET

Fig. 4. Inspect Element Result of Login Page with any credential

Fig. 5. Inspect Element Result of Search News Page

python sqlmap.py -u "http://cilegon.go.id/earsip/index.php"

--data=”login=admin&password=123456”

Fig. 6. Login Page Vulnerability Analysis

Vol.13/No.1 (2021) INTERNETWORKING INDONESIA JOURNAL 7

 ISSN: 1942-9703 / CC BY-NC-ND

2) Next/Prev News Page Vulnerability Assessment: Sqlmap

could not find a parameter that would allow SQL

injection to run on the next/previous news page. However,

this page has a cross-site scripting (XSS) vulnerability in

the parameter `halaman`, as shown in Fig. 7.

The command to extract this vulnerability is:

3) Search News Page Vulnerability Assessment: Like the

login page and the next/previous page, sqlmap did not

find any parameters that could perform SQL injection on

the search news page, as shown in Fig. 8.

The command to extract this vulnerability is:

4) Read Single News Page Vulnerability Assessment: This

page found a vulnerability that allowed SQL injection to

be executed. Based on the results of the sqlmap analysis,

you can use the boolean-based blind, time-based blind,

dan UNION query techniques on this page to perform

SQL injection, as shown in Fig. 9.

The command to extract this vulnerability is:

E. Exploitation

Based on the vulnerability analysis results, the Read Single

News page has loopholes that could be exploited to perform

SQL injection. Therefore, exploitative activities are carried out

against the page.

1) Get Databases Name: To get data from the eArsip

application, the first step is to find the databases name

using the following command:

And surprisingly, as shown in Fig. 10, there are 138

databases on the server. The initial assumption is that

either the system administrator uses the same MySql user

for many applications or the user used by the eArsip

application is the administrator database, this will be used

further in a later step. For the eArsip application itself, it

uses a database named db_earsip.

2) Is User A Database Administrator: To check if the user

used by the eArsip application is the database

administrator, you can use the following command:

Also, as shown in Fig. 11, it is correct that the user being

used is a database administrator. Of course, this is very

dangerous. Further exploitation of the database server by

other penetration testing techniques could allow an

attacker to hijack the database server.

3) Get Tables Name: This step is done to get a list of table

names in the database. The sqlmap penetration results

show that there are 18 tables in the db_earsip database, as

shown in Fig. 12. To get a list of table names, you can use

the following command:

python sqlmap.py -u
"http://cilegon.go.id/earsip/index.php?keyword=&halaman=2”

Fig. 7. Next/Prev News Page Vulnerability Analysis

python sqlmap.py -u "http://cilegon.go.id/earsip/index.php?pil=brt”

--data=”keyword=test”

Fig. 8. Search News Page Vulnerability Analysis

python sqlmap.py -u "http://cilegon.go.id/earsip/index.php?dtl=1&id=8”

Fig. 9. Read Single News Page Vulnerability Analysis

python sqlmap.py -u "http://cilegon.go.id/earsip/index.php?dtl=1&id=8” --dbs

Fig. 10. Databases Name

python sqlmap.py -u "http://cilegon.go.id/earsip/index.php?dtl=1&id=8”
--is-dba

Fig. 11. Check If User is A Database Administrator

python sqlmap.py -u "http://cilegon.go.id/earsip/index.php?dtl=1&id=8”

-D db_earsip --tables

8 INTERNETWORKING INDONESIA JOURNAL DJAJADI & SUTISNA

4) Dump Tables Data: Once all the required information has

been collected, you need to dump all the data from the

database into a CSV file with the target set in the scope of

the test. It can be done with the following command:

All data dump files can be seen in Fig. 13. In the picture,

all tables in the database have been successfully dumped

into the CSV files. Fig. 14 shows one of the contents of a

file that contains information related to the user, including

hashed passwords. Of course, this is very risky as it can

be used later to get the user's initial password.

F. Discussion and Recommended Solutions

The effects of SQL Injection attacks are extremely

dangerous and can harm the organization by forcing the

disclosure of important and sensitive information. Therefore

some defense mechanisms must be implemented fully to

mitigate risk and prevent SQL injection attacks. Several

strategic defenses can be adopted, such as follows:

• Filtering all the user’s input data before processing by the

application

• Cloudflare Website Protection

• HTTPS usage

• Do not use dynamic SQL but use prepared statements

• Update and patch the application and all of its software

dependencies

• Use encryption for saving confidential data like password

• Monitor and log SQL statements being executed within the

application.

• Avoid using the same database user for each web

application and minimize the privileges assigned to it.

V. CONCLUSION

Based on the results of the penetration tests performed, it

has been demonstrated how dangerous the SQL Injection

attack can be for less guarded web and database applications.

Data from web applications can be easily dumped using tools

without the need for special knowledge. As penetration tools

and methods improve day by day, application developers and

testers need to be more conscious and concerned about the

security vulnerability of the applications they create, deploy

and maintain.

Securing web applications is not a light task as there is no

secure application. Fortunately, several protection mechanisms

can be implemented to mitigate the risk of SQL injection

attacks risk.

REFERENCES

[1] D. Stiawan, M. Y. Idris, A. H. Abdullah, F. Aljaber, and R. Budiarto,
“Cyber-attack penetration test and vulnerability analysis,” Int. J. Online

Eng., vol. 13, no. 1, pp. 125–132, 2017, doi: 10.3991/ijoe.v13i01.6407.

[2] A. Maraj and E. Rogova, “Testing Techniques and Analysis of SQL
Injection Attacks,” in 2nd International Conference on Knowledge

Engineering and Applications, 2017, pp. 55–59.

[3] U. Gupta, S. Raina, P. Verma, P. Singh, and M. Aggarwal, “Web
Penetration Testing,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. V,

2020.

[4] R. A. Katole, D. S. S. Sherekar, and D. V. M. Thakare, “Detection of
SQL Injection Attacks by Removing the Parameter Values of SQL

Query,” in 2018 2nd International Conference on Inventive Systems

and Control (ICISC), 2018, no. Icisc, pp. 736–741.
[5] J. P. N and D. M. B. Raju, “Contemplating Security of Http From Sql

Injection and Cross Script,” 2017.

[6] C. Cetin, “Authentication and SQL-Injection Prevention Techniques in
Web Applications,” no. June, 2019, [Online]. Available:

https://scholarcommons.usf.edu/etd/7766/.

[7] W. H. Rankothge, M. Randeniya, and V. Samaranayaka, “Identification
and Mitigation Tool for Sql Injection Attacks (SQLIA),” in

International Conference on Industrial and Information Systems

(ICIIS), 2020, pp. 591–595.
[8] C. Ping, W. Jinshuang, Y. Lanjuan, and P. Lin, “SQL Injection

Teaching Based on SQLi-labs,” in 2020 IEEE 3rd International

Conference on Information Systems and Computer Aided Education
(ICISCAE) SQL, 2020, pp. 191–195.

[9] A. Alanda, D. Satria, M. I. Ardhana, A. A. Dahlan, and H. A. Mooduto,

“Web application penetration testing using sql injection attack,” Int. J.
Informatics Vis., vol. 5, no. 3, pp. 320–326, 2021, doi:

10.30630/joiv.5.3.470.

[10] L. Zhang, D. Zhang, C. Wang, J. Zhao, and Z. Zhang, “ART4SQLi :
The ART of SQL Injection,” IEEE Trans. Reliab., vol. PP, pp. 1–20,

2019, DOI: 10.1109/TR.2019.2910285.

[11] S. Nagpure and S. Kurkure, “Vulnerability Assessment and Penetration
Testing of Web Application,” in 2017 International Conference on

Computing, Communication, Control and Automation (ICCUBEA),

2017, pp. 1–6, DOI: 10.1109/ICCUBEA.2017.8463920.
[12] S. L. A. S and D. V S, “An Emulation of SQL Injection Disclosure and

Deterrence,” in 2017 International Conference on Networks &

Advances in Computational Technologies (NetACT), 2017, no. July, pp.
314–316.

Fig. 12. Tables Name

python sqlmap.py -u "http://cilegon.go.id/earsip/index.php?dtl=1&id=8”

-D db_earsip --dump

Fig. 13. CSV Dumped Files

Fig. 14. List of User Data

Vol.13/No.1 (2021) INTERNETWORKING INDONESIA JOURNAL 9

 ISSN: 1942-9703 / CC BY-NC-ND

[13] Pooja and Monika, “SQL Injection: Detection and Prevention
Techniques,” Int. J. Sci. Eng. Res., vol. 7, no. 12, pp. 280–285, 2016,

doi: 10.4156/ijact.vol3.issue7.11.

[14] A. Goutam and V. Tiwari, “Vulnerability Assessment and Penetration
Testing to Enhance the Security of Web Application,” in 2019 4th

International Conference on Information Systems and Computer

Networks (ISCON), 2019, pp. 601–605.
[15] L. Ma and C. Zhao, “Research on SQL Injection Attack and Prevention

Technology Based on Web,” in 2019 International Conference on

Computer Network, Electronic and Automation (ICCNEA), 2019, pp.
176–179, DOI: 10.1109/ICCNEA.2019.00042.

[16] L. Erdődi, Å. Å. Sommervoll, and F. M. Zennaro, “Simulating SQL

injection vulnerability exploitation using Q-learning reinforcement
learning agents,” J. Inf. Secur. Appl., vol. 61, no. July, p. 102903, 2021,

doi: 10.1016/j.jisa.2021.102903.

[17] O. Kasim, “An ensemble classification-based approach to detect attack
level of SQL injections,” J. Inf. Secur. Appl., vol. 59, no. May, pp. 0–3,

2021, DOI: 10.1016/j.jisa.2021.102852.

[18] https://en.tempo.co/read/1469740/bpjs-kesehatan-massive-data-breach-
investigation-update (last access: 4th Dec 2021)

[19] https://en.tempo.co/read/1521083/bssns-website-gets-hacked-

cybersecurity-expert-comments (last access: 4th Dec 2021)
[20] H. Singh, S. Jangra, and P. K. Verma, “Penetration Testing: Analyzing

the Security of the Network by Hacker’s Mind,” Ijltemas, vol. V, no. V,

pp. 56–60, 2016.
[21] A. Bin Ibrahim and S. Kant, “Penetration Testing Using SQL Injection

to Recognize the Vulnerable Point on Web Pages,” Int. J. Appl. Eng.
Res., vol. 13, no. 8, pp. 5935–5942, 2018, [Online]. Available:

http://www.ripublication.com.

[22] A. T. Laksono and J. D. Santoso, “Analysis of Website Security of
SMKN 1 Pangandaran Against SQL Injection Attack Using OWASP

Method,” Int. J. Informatics Comput. Sci., vol. 5, no. 2, pp. 209–216,

2021, DOI: 10.30865/ijics.v5i2.3208.
[23] R. Dharam and S. G. Shiva, “Runtime Monitoring Technique to handle

Tautology based SQL Injection Attacks,” Int. J. Cyber-Security Digit.

Forensics(IJCSDF), vol. 1, no. 3, pp. 189–203, 2012.
[24] I. Tasevski, F. Informatics, A. Skopje, and R. N. Macedonia,

“Overview of SQL Injection Defense Mechanisms,” 2020.

[25] Y. Khera, D. Kumar, and N. Garg, “Analysis and Impact of

Vulnerability Assessment and Penetration Testing,” in 2019

International Conference on Machine Learning, Big Data, Cloud and

Parallel Computing (COMITCon), 2019, pp. 525–530.
[26] I. Yaqoob, S. A. Hussain, S. Mamoon, N. Naseer, J. Akram, and A.

Rehman, “Penetration Testing and Vulnerability Assessment,” J. Netw.

Commun. Emerg. Technol., vol. 7, no. 8, pp. 10–18, 2017.
[27] E. Filiol, F. Mercaldo, and A. Santone, “A Method for Automatic

Penetration Testing and Mitigation: A Red Hat Approach,” in 25th

International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems, 2021, vol. 192, pp. 2039–2046,

DOI: 10.1016/j.procs.2021.08.210.

