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Implementing Inertial Measurement Unit on
Covid Robot with Complementary and
Madgwick Filter

Arjon Turnip, Muhammad Igbal Fadlillah and Erwin Sitompul

Abstract— Rapidly developing technology causes autonomous
robots to develop significantly as well. This causes the demand for
autonomous robots to increase in various industrial sectors
ranging from agriculture, large-scale manufacturing industries,
and even hospitals. Especially in the midst of the Covid-19
pandemic where physical distancing is applied to make
autonomous robots that can be used as a substitute for medical
personnel. The Inertial Measurement Unit (IMU) is a very
important part of an autonomous robot because the IMU can
measure 3 axes. The IMU sensor has been integrated with 3 other
sensors, namely accelerometer, gyroscope, and magnetometer
sensors. However, the data obtained from the sensor has an error
value that can cause noise. Therefore, a filter is needed to get high
accuracy results. In this study, complementary methods and
Madgwick filters were used to reduce noise in the raw data so that
the results can be maximized.

Index Terms — Robot Autonomous, Covid-19, Inertial
Measurement Unit (IMU), Complementary Filter, Madgwick
Filter.

I. INTRODUCTION

UTOMATION has now entered all aspects of human life,

one of which is in the health sector. This is due to the

Covid-19 pandemic which demands the application of
physical distancing so that robot technology autonomous can
be utilized [1], [2]. The rapid development of robots every year
causes the development of robot research to autonomous to
begin to develop after the 20th century [3]. This is supported
by the demand for technology Robot Process Automation
rapidly increasing (RPA)and it is estimated that up to 90% of
industries use RPA by 2020 [4]. Robots Autonomous requires
learning of the navigation system so that the robot can move in
all directions properly [5].

The problem that will be faced by robots autonomous is that
when the robot is moving automatically towards its destination,
the robot has many obstacles. The navigation error will increase
over time due to the integration of measurements noise [6]. To
overcome these problems, autonomous robots must be added
with sensors that can detect these navigational errors. In
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autonomous robots, obstacle avoidance can distinguish
obstacles from transmittable areas to make decisions about
their navigation [7]. The component that can be used to solve
this problem is the Inertial Measurement Unit (IMU). The robot
navigation system requires assistance from the IMU sensor to
determine the robot's orientation when doing localization. The
implementation of the IMU on the covid robot serves to
determine the tilt of the robot, the acceleration of the robot, and
the robot's magnetic field with respect to the earth. IMU is a
physical sensor to help determine the estimated location and
location of the robot [8]. In addition, IMU cooperates with
LiDAR to assist the robot's work during mapping [9].

IMU consists of 2 types, namely 6-DOF and 9-DOF both have
3 types of sensors, namely, accelerometer, gyroscope, and
magnetometer [10]. Each sensor has 3 different values based
on its reference axis, namely the x-axis, (roll axis), y-axis (pitch
axis), and z-axis (yaw axis) [11]. The IMU sensor has a bias
value that causes the resulting output to have value drift (error)
so a filter is needed to reduce the value error. There are several
filter methods that can be used, including Kalman Filter,
Mahony, Madgwick, Geometric Stochastic, Complementary
Filter, Extended Kalman Filter (EKF), Unscented Kalman
Filter (UKF) [12]-[17]. In this study, two methods were used,
namely Complementary and Madgwick Filter.

A complementary filter is a filter method with a less complex
application because it does not require many variables, only a
few variables such as alpha (filter coefficient), sampling time,
slope values gyroscope, and accelerometer. While the
Madgwick Filter is the development of a more efficient
Mahony filter. Madgwick Filter has the advantage that it does
not require a lot of memory, is effective at low-sampling rates
(10 Hz) and has better accuracy than the Kalman Filter [18].
There are many studies and applications of IMU sensors such
as motion trajectory tracking in geodetic survey applications
[19], mobile robot positioning with 2 sensors [20], navigation
indoor [21], autonomous underwater vehicles [22], the use of
IMU and LiDAR in an indoor environment. room [9]. The
purpose of this study was to determine the best filter to be used
in the implementation of the IMU on the covid robot.

Il. METHODOLOGY

In the covid robot research, this research has used LiDAR 3D
and LIiDAR 2D mapping sensors as navigation and rotary
encoder as speed sensors and position sensors. These two
sensors play an important role in the navigation of the COVID-
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19 autonomous robot. In order to integrate LiDAR and the
rotary encoder, an IMU sensor is needed, the sensor Inertial
Measurement Unit will be installed on this covid robot to get a
better and more accurate navigation path. All sensors contained
in the robot will be processed using Intel NUC as the robot
control center. This paper focuses on collecting IMU sensor
data to estimate the robot's accuracy when navigating by
eliminating the noise generated by the IMU sensor. Data
collection will be carried out in the Universitas Padjadjaran
Test Room. The following is the composition of the Covid
robot components and the data collection locations are shown
in Fig. 1.
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Fig 1. () The composition of the Robot Covid, (b) Data collection location

The IMU sensor has a value error generated by the IMU sensor
itself, if it is integrated over time, the error value will be even
greater. Therefore, a filter is needed to overcome this. The
method used to filter the IMU sensor in this study is the Robot
Operating System (ROS) Complementary and the algorithm
Madgwick filter. Complementary filters use a combination of
sensors accelerometer and gyroscope to perform the filter. The
sensor is accelerometer values, long-term while the gyroscope
is used to take used to retrieve data short-term. The two things
are put together through mathematical calculations, the value
of the will be obtained complementary filter. In Inertial
Measuring Units (IMU), there are two methods to calculate the
angle of position of the robot. One such method for calculating
angles is to integrate the angular velocity of gyroscopes using
the formula in equation (1). The first equation is the process of
converting the output value obtained from gyroscope sensor
into an angle value with degree units. The unit value obtained
from the initial angle (in degrees) is then added with integral
results of angular velocity in the time range from 0 until t which
is read in the gyroscope sensor.
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where the angle 2 is the initial angle of the object's position.
Meanwhile, angle y is the calculated value obtained from the
angular velocity of the gyroscopes. This keeps can also be
related to the acceleration of three axes in the coordinate system
by using an accelerometer, where the accelerometer is a sensor
used to measure the speed of an object. In the calculation
below, the accelerometer can calculate the roll and pitch angles.
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The equation (2) is the calculation of the accelerometer sensor
and magnetometer on the IMU. Where X, y, and z is the value
of the three axes obtained after applying accelerometer
calibration in the raw data measurements (ax, ay, and az).
Meanwhile, g is the vector of gravitational velocity that
perpendicular to the ax and az value. The values of mx and my
are the magnetic induction intensity of the system. Roll is the
rotation between the front to the back of the axis, while the
pitch is the side-to-side rotation of the axle. This calculation
also uses a magnetometer to calculate the yaw angle, where the
yaw angle is the rotation between the vertical angles. From the
two formulas above, after being implemented the use of an
accelerometer has static stability, but is susceptible to high-
frequency signals and is less reliable to vibration. Meanwhile,
the use of gyroscopes has better dynamic stability, while the
data is relatively unreliable in a stable environment. According
to sources [21]-[25], filter algorithms complementary can
combine the two sensors above to correct integration errors
with gyroscopes and rely on stability with accelerometers. The
following block diagram of the Complementary filter is shown

in Fig. 2.
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Fig 2. Complementary filter block diagram.

In the Madgwick filter, there are several filter stages, hamely
Orientation from angular rate, Orientation from vector
observations, Filter fusion algorithm, Magnetic distortion
compensation, Gyroscope bias drift compensation, and Filter
gains. Some of these stages will form the optimal movement
output for the robot. In the Orientation from the angular rate
stage, the 3-axis gyroscope will process the input X, y, and z by
measuring the speed. Then at the Orientation from the vector
observations stage the data obtained will be processed by
measuring the magnitude and direction of the gravitational
field. But when measuring the magnitude and direction of the
gravitational field there is a disturbance from the linear
acceleration due to the sensor moving continuously.
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Furthermore, at the filter fusion algorithm stage, it will process
the data on the previous filter where the output of the filter
fusion algorithm is the approximate orientation of the sensor
relative to the earth. The following block diagram of the
Madgwick filter is shown in Fig. 3.
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Fig 3. Madgwick filter block diagram

From Fig 3, there are two processes using the madgwick filter,
the first one is using an accelerometer and magnetometer. The
accelerometer and magnetometer measurements are used to
correct the orientation of the gyroscope measurement error in
the gyroscope correction algorithm. The gyroscope correction
algorithm can also be passed by the gyroscope, this is the
second way. The gyroscope correction algorithm is the
combination of gyroscope measurements and correction
algorithm that passed the quaternion propagation to compute
the body orientation starting from the estimated of the previous
step.

1. RESULTS AND DISCUSSIONS

The IMU filter testing is done by comparing the results of the
orientation data obtained in the Complementary and Madgwick
methods. These methods’ results compare the conditions of
IMU sensors before and after being filtered. The data was taken
in 5 conditions which are standstill, rotated to the right 90°,
rotated to the left 90°, rotated up 90°, and rotated down 90° is
shown in Fig. 4.

There are 3 data from each method that are being compared,
namely the roll (x-axis), pitch (y-axis), and yaw (z-axis). The
graph results from plot juggler on Robot Operating System.
The First one is roll angle, the orange line represents pre-
filtered data and the green line represents filtered data. It can be
seen that, because the reference axis of rotation is on the x-axis,
the graph will go up or down and be in a stable condition when
the IMU is rotated to the right and to the left. The following
graph results were obtained using the complementary filter
method in the roll axis with the x-axis as a unit of time and the
y-axis unit of degrees are shown in Fig 5.
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Fig 4. (a) standstill, (b) rotated to the right 90°, (c) rotated to the left 90°, (d)
rotated up 90°, and (e) rotated down 90°
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Fig 5. (a) standstill, (b) rotated right 90°, (c) rotated up 90°, (d) rotated left 90°,
and (e) rotated down 90°
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Second, the pitch angle, the red line represents pre-filtered data
and the blue line represents filtered data. the pitch angle has a
reference axis of rotation on the y-axis, so the graph will go up
or down if the IMU is rotated up or down. While moving in the
other direction of the axis, it will produce noise on the graph.
The following graph results were obtained using the
complementary filter method are shown in Fig 6. in the pitch
axis.
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Fig 6. (a) standstill, (b) rotated right 90°, (c) rotated up 90°, (d) rotated left 90°,
and (e) rotated down 90°

Third, the yaw angle, the purple line represents data pre-filtered
and the pink line represents filtered data. The yaw angle has a
reference axis of rotation on the z-axis, so the graph will have
a change when the IMU sensor is rotated also involving a
change of degrees on the z-axis. The following graph results
were obtained using the complementary filter method are
shown in Fig 7. in the yaw axis.
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Fig 7. (a) standstill, (b) rotated right 90°, (c) rotated up 90°, (d) rotated left
90°, and (e) rotated down 90°

Meanwhile, in the Madgwick filter method, the data is taken in
the same way in the same position as explained before with the
3-reference axis, roll, pitch, and yaw. The concept of the axis
of rotation same as the complementary filter method. It can be
seen from the results, that there is still a little noise between the
filtered and unfiltered data on the three axes. It makes the
resulting drift value to be quite large because there is
interference from linear acceleration due to the IMU sensor that
continues to move. The following graph results were obtained
using the madgwick filter method with the x-axis as a unit of
time and the y-axis unit of a degrees are shown in Fig 8. in the
roll axis. The green line represents pre-filtered data and the red
line represents filtered data.
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Fig 8. (a) standstill, (b) rotated right 90°, (c) rotated up 90°, (d) rotated left 90°,
and (e) rotated down 90°

The following graph results were obtained using the madgwick
filter method is shown in Fig 9. in the pitch axis. The red line
represents pre-filtered data and the blue line represents filtered
data.
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Fig 9. (a) standstill, (b) rotated right 90°, (c) rotated up 90°, (d) rotated left 90°,
and (e) rotated down 90°

The following graph results were obtained using the madgwick
filter method are shown in Fig 10. on the yaw axis. The green
line represents pre-filtered data and the orange line represents
filtered data.
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Fig 10. (a) standstill, (b) rotated right 90°, (c) rotated up 90°, (d) rotated left
90°, and (e) rotated down 90°

The data is obtained by rotating the IMU on each of the x-axis,
y-axis, and z-axis so that an angle will be formed on each axis.
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In the Complementary filter method, it is processed using
accelerometer and gyroscope sensors. The sensor
accelerometer serves to take a value in the long term (long-
term) after the sensor is moved and returns to a stationary
position, the data from the accelerometer sensor will be used.
While the sensor is a gyroscope used to retrieve data in a short
period of time (short-term) when the sensor is moved to rotate
each axis.

The Madgwick method gives more results to the magnitude
and direction of the gravitational field. But when measuring the
magnitude and direction of the gravitational field there is a
disturbance from the linear acceleration due to the IMU sensor
which is constantly moving. Based on the results of the data in
Fig 5. it can be seen that the noise generated when the IMU
sensor is moved on three different axes is much less than that
of not using the Complementary filter using the ROS algorithm.
While in Fig 6. using the Madgwick method the resulting noise
can still be seen clearly on the three reference axes.

IV. CONCLUSION

Based on the research results, it can be concluded that the
results obtained using the Complementary filter method are
better than the Madgwick filter which has been shown in Fig.
5-7 and Fig. 8-10. In testing the data was taken under 5
conditions, namely stationary and rotated to the right, left, up,
and down by 90° each. Noise generated by the Complementary
filter method can be suppressed properly using the ROS
algorithm. This is because the complementary filter uses a high
pass filter to remove noise on the gyroscope and a low pass
filter on the accelerometer. This will cause accuracy when the
robot navigates to be much better. Meanwhile, there is still
noise between filtered and unfiltered data in the Madgwick
method. Thus, a good filter method to use in the
implementation of the covid robot is the Complementary filter,
because the noise generated in the Complementary filter
method can be well attenuated compared to the Madgwick filter
based on the graph shown in the results and discussion.
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