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Abstract— Precision agriculture has gained significant attention 

for its potential to optimize resource use and enhance crop 

productivity. Autonomous drones equipped with smart systems 

are increasingly being used for tasks such as watering, 

fertilization, and monitoring. This paper presents the development 

and evaluation of a Smart Sprayer system that utilizes an 

autonomous drone for precise water discharge control. The system 

employs a weighted K-Nearest Neighbors (KNN) algorithm to 

classify watering intensity, achieving an accuracy of 90.7%. A 

dataset of 3,750 samples was used, evenly distributed across six 

classes (Stop, Very Low, Low, Medium, High, and Very High) and 

split 80:20 for training and testing. The model demonstrated 

strong performance in key metrics such as Precision and Recall, 

excelling particularly in predicting features like Altitude and 

Sprayer Valve, as reflected in high Positive Predictive Values and 

low False Discovery Rates. However, challenges remain in 

accurately classifying certain features, including Drone Velocity 

and GPS Error, where lower Precision and higher False Discovery 

Rates were observed. These limitations highlight the need for 

further model refinement and tuning. Future work will focus on 

real-world deployment and hardware optimizations to enhance 

system performance in autonomous agricultural operations. 

 
Index Terms— Smart agriculture, Autonomous farming drones, 

K-Nearest Neighbors, Sprayer system, Wireless. 

I. INTRODUCTION 

S an agricultural country, Indonesia's agricultural sector 

not only fulfills the food needs of its population but also 

plays a significant role in the national economy [1][2]. 

Agriculture serves as the backbone of Indonesia's economy, 

contributing 14% to the national GDP. Additionally, 33% of the 

workforce is employed in the agricultural sector, making it the 

second-largest sector in terms of labor absorption, particularly 

in livestock farming. However, the contribution of agriculture 

to Indonesia's GDP has begun to decline [3].  

Productivity in the agricultural and food sectors has faced 

numerous challenges in recent years. These challenges stem 

from several factors, including the shrinking availability of 

agricultural land, the depletion of natural resources, and the 

slow advancement of agricultural technology due to the 

continued reliance on traditional methods [4]. One potential 

solution is the integration of modern technology into 

agriculture. This can be achieved through the implementation 

of smart agriculture using unmanned aerial vehicles (UAVs), 

enabling autonomous agricultural operations and reducing 

human labor dependency [5-7]. 

UAVs offer relatively low operating costs and are designed 

for high maneuverability, allowing them to access hard-to-

reach areas with ease. Their compact size enables them to fly at 

low altitudes over crops, ensuring high precision in various 

tasks such as real-time crop monitoring, pesticide spraying, and 

irrigation. By automating tasks that traditionally required 

substantial human labor, UAV technology enhances both 

operational efficiency and effectiveness. Moreover, UAVs can 

be equipped with advanced sensors, including multispectral and 

thermal cameras, to provide detailed, real-time data on crop and 

soil conditions. This data empowers farmers to make informed 

and timely decisions, ultimately improving agricultural 

productivity and reducing costs. The adoption of UAV 

technology not only yields significant economic benefits but 

also supports more sustainable agricultural practices [7-9]. 

The potential of agricultural productivity has yet to be fully 

realized, primarily due to inefficiencies in crop monitoring, 

irrigation patterns, and pesticide application over large areas of 

farmland [10][11]. To address these challenges, the use of 

drones has become essential. By integrating flight controllers, 

drones can autonomously perform spraying over extensive 

fields while accounting for various factors to enhance irrigation 

efficiency [12][13]. Therefore, developing an autonomous 

drone-based irrigation system that considers variables such as 

speed, spraying power, and soil coverage is necessary to 

maximize the effectiveness of drone utilization. 

Several studies have been conducted on the use of 

autonomous drones for pesticide spraying. In this context, 

analyzing droplet deposition characteristics has been a key 

focus in pesticide application research. The study conducted in 

[14] identified several independent factors that influence the 

deposition characteristics of droplets sprayed by UAVs. 

Additionally, in UAV-based spraying, optimizing influencing 

parameters can enhance precision in plant irrigation. In [15], an 

experiment was conducted to assess the effectiveness of canopy 
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structures using four factors: Spray Application Volume Rate 

(SV), Flight Speed (FS), Flight Height (FH), and Flight 

Direction (FD). Similarly, [16] examined air spraying and 

droplet distribution using the Box-Behnken method. 

The development of UAV spraying systems extends beyond 

hardware improvements. To enhance accuracy and efficiency, 

researchers have also explored machine learning integration. 

Recent advancements in computing and data availability have 

driven progress in machine learning, particularly deep learning 

[17]. Numerous studies have examined machine learning 

applications in UAVs. In [18], an analysis of the latest 

advancements and trends in reinforcement learning (RL)-based 

UAV applications was conducted, identifying potential future 

research directions. The application of machine learning in 

drone design and development can significantly enhance 

operational efficiency and effectiveness. 

Machine learning encompasses various models for analyzing 

and classifying data, one of which is K-Nearest Neighbors 

(KNN) [19–21]. Given a dataset, the algorithm predicts 

relationships between new and existing data, classifying new 

inputs into the most suitable categories based on learned 

patterns [22–26]. This algorithm can be applied to improve the 

accuracy and efficiency of drone spraying by optimizing input 

parameters. In this study, KNN is proposed for classifying 

watering force using sensor data such as altitude, wind speed, 

and drone velocity. 

This research focuses on developing an optimal irrigation 

method for agricultural drones using KNN. The objective is to 

establish an effective and efficient drone-based watering system 

that can be successfully implemented in the agricultural 

industry.  

II. METHOD 

A. Data Collection 

This research was conducted at the Basic Science Service 

Center, Padjadjaran University, Indonesia, in an area designed 

to resemble agricultural land. The field test involved 12 drone 

flights, using four different trajectory types and three different 

altitudes. During the flights, data was collected on altitude, 

wind speed, drone speed, and latitude and longitude 

coordinates. 

The drone used in this test had an F450 frame, and the flight 

controller was a Pixhawk 2.4.6, which managed flight and 

landing operations. The drone was equipped with an M8N 

SE100 Radiolink GPS module for location tracking during 

flight. A Raspberry Pi 4 was used as the microcontroller to run 

the Python program in this study, enabling wireless 

communication. For watering purposes, DC motors were used. 

The Pixhawk serves as the drone's primary controller, 

managing all aspects of flight, including flight commands, 

forward movement, and landing. Additionally, Pixhawk has the 

capability to store data such as altitude, drone location, and 

waypoints for flight missions. 

In this study, the Mission Planner application was used for 

drone calibration and configuration. Mission Planner also 

enables the creation of flight missions by defining waypoints, 

which serve as the designated flight path for the drone to follow. 

The Micro Air Vehicle Link (MAVLink) protocol is used for 

telemetry and communication, facilitating the connection 

between Pixhawk, acting as the flight controller, and the 

Raspberry Pi 4, functioning as the microcontroller. By utilizing 

MAVLink, the Raspberry Pi can receive various types of drone 

data stored on Pixhawk. 

The Raspberry Pi is responsible for controlling the watering 

force of the DC motor through a motor driver. It communicates 

with the motor using the Raspberry Pi's GPIO (General Purpose 

Input/Output) pins, which are configured via the Python library. 

The DC motor is connected to a water source through a small 

hose equipped with a watering nozzle. When the motor is 

activated, water is drawn and flows through the nozzle. The 

Raspberry Pi regulates the watering force by adjusting the 

voltage supplied to the motor driver. In the watering system, the 

data used to regulate watering force includes altitude, wind 

speed, and drone speed. Meanwhile, the decision to activate 

watering is based on predefined waypoint data assigned to the 

drone. 

 

Fig. 1.  Block Diagram of the Smart Sprayer System on a Sprayer Drone. 

 

A. K-Nearest Neighbors (KNN) method 

The data obtained from the variables is processed using the 

K-Nearest Neighbors (KNN) method. KNN is considered one 

of the simplest algorithms in machine learning. While it can be 

used for both classification and regression, it is more commonly 

applied to classification tasks. Given a dataset, the algorithm 

predicts the relationship between unseen data and existing data. 

Based on these predictions, it classifies new data into the most 

suitable categories. As a result, the KNN algorithm enables 

reliable classification of new data. 

In this study, weighted KNN (wKNN) was used with the goal 

of developing a technique that does not rely on an arbitrary 

choice of k, which could lead to a high classification error. In 

this approach, the number of nearest neighbors is implicitly 

determined by the weight: if k is too large, it is automatically 

adjusted to a lower value. 

For data calculation using the KNN method, the algorithm 

structure is described as follows. Suppose L={(yi, xi), i = 

1,...,nL} is a set of learnings from observations xi with class 

membership given yi, and suppose x is a new observation whose 

class y must be predicted. Then find k+1 nearest neighbors of x 

based on the distance function 𝑑(𝑥, 𝑥(𝑖)). The neighbors to 

(k+1) are used for the normalization of k least distance via the 

formula:  
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𝐷(𝑖) = 𝐷𝑥, (𝑥(𝑖)) =
𝑑(𝑥,𝑥(𝑖))

𝑑(𝑥,𝑥(𝑘+1))
              (1) 

 

 

 
Fig. 2.  Smart Sprayer System on Autonomous Drone Flowchart. 

 

 
Fig. 3.  K-Nearest Neighbors Flowchart. 

 

which is a distance function for k+1 data. Next, transform the 

normalized distance 𝐷(𝑖) using the kernel function 𝐾 to the 

weight 𝑤(𝑖) = 𝐾(𝐷(𝑖)). As a prediction for class y membership 

from observations x, select the class that shows the weighted 

majority of the nearest neighbors k. So that the following 

formula is obtained: 

 

𝑦̂ = 𝑚𝑎𝑥𝑟(∑ 𝑤(𝑖)𝐼(𝑦(𝑖) = 𝑟))𝑘
𝑖=1            (2) 

 

where after the determination of the similarity size for the 

observations in the learning set, each new case (y,x) is classified 

into the class with the greatest weight added. 
 

III. RESULTS AND DISCUSSION 

The data collection process involves gathering sensor 

measurements from the drone's smart sprayer. The collected 

data includes altitude, wind speed, drone speed, and GPS errors. 

The dataset comprises 3,750 samples, categorized into six 

distinct classes: Off, Very Low, Low, Medium, High, and Very 

High. Each class contains an equal number of 625 samples to 

ensure a balanced data distribution. Maintaining this balance is 

essential to prevent model bias toward classes with more data, 

which could lead to inaccurate predictions and degrade overall 

model performance. Fig. 4 presents the sensor measurement 

results from the drone's smart sprayer, while Table 1 provides a 

detailed description of the dataset. 

 

 
Fig. 4.  Raw data from the drone's smart sprayer: Altitude (blue), wind speed 
(green), drone speed (sky blue), Error GPS (yellow). 

 

When determining the classification range of data in a 

dataset, several methods can be employed, each offering 

distinct advantages. In this experiment, however, the Box Plot 

method was chosen for its ability to provide a clear and concise 

summary of data distribution. This method relies on five key 

statistical measures: the minimum, first quartile (Q1), median, 

third quartile (Q3), and maximum. These metrics not only offer 

insights into the central tendency and spread of the data but also 

help identify outliers and overall variability within the dataset. 

By leveraging the Box Plot method, we can visually and 

numerically refine classification ranges, enabling more precise 

categorizations. Its robustness lies in its ability to divide data 

into quartiles, making it particularly useful for datasets with 
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skewed distributions or the presence of outliers. This enhances 

classification accuracy by ensuring that data is categorized 

based on meaningful thresholds rather than arbitrary divisions. 

The results of applying the Box Plot method to this dataset are 

illustrated in Fig. 5, where the transformation of data into 

quartiles can be observed. 

 
TABLE I 

SMART SPRAYING DRONE DATASET DESCRIPTION 

 Altitude 

(m) 

Wind Speed 

(m/s) 

Velocity 

(m/s) 

Error 

GPS (%) 

Output 

Count 3750 3750 3750 3750 3750 

mean 3.8 3.73  3.01 3.74  2.5 

Std 2.24  2.21  1.74 3.3  1.7 

min 0.004  0.002  0.003  0.002  0 

25% 1.87  1.88 1.5 1.5  1 

50% 3.75  3.64  3.02 2.97  2.5 

75% 5.6 5.5  4.54 4.45 4 

Max 8  8  6  15  15 

 

 
Fig. 5.  Data Plot Results into Box Chart. 

 

Each variable in a dataset exhibits some level of correlation 

with other variables, representing the strength and direction of 

their relationship. Correlations can be classified into two types: 

negative correlation, where the correlation coefficient is less 

than 0, indicating that as one variable increases, the other 

decreases, and positive correlation, where the coefficient is 

greater than 0, meaning both variables tend to increase or 

decrease together. When the correlation coefficient between 

two variables is exactly 0, it signifies the absence of any linear 

relationship between them (no correlation). In Fig. 6, the 

heatmap illustrates the relationships between variables in the 

dataset, helping to quickly assess which variables are strongly 

interconnected and which are independent. This visualization is 

particularly useful for identifying multicollinearity, where 

multiple variables are highly correlated, potentially affecting 

the performance of certain models like regression analysis. 

 

 
Fig. 6.  Correlation Between Variables using Heatmaps 

 

The heatmap table in Fig. 6 gives a correlation matrix of five 

variables: altitude, windspeed, drone velocity, GPS error, and 

output (sprayer valve). Each value in the matrix represents the 

correlation coefficient between two variables, which ranges 

from -1 to 1. Its correlation with windspeed (-0.0014) and 

velocity (-0.0031) is very close to zero, indicating no linear 

relationship between altitude and these variables. Altitude 

shows a weak positive correlation with error (0.011), but this is 

still quite minimal, suggesting almost no connection. The 

correlation with output (0.14) is stronger compared to the other 

variables but still weak. This implies a mild positive 

relationship between altitude and output, meaning as altitude 

increases, output slightly tends to increase. Windspeed and 

drone velocity have a weak negative correlation with altitude (-

0.0014), and a very weak positive correlation with velocity 

(0.0032), respectively, again suggesting almost no connection. 

The correlation with error (0.011) is slightly positive but still 

insignificant. Interestingly, the correlation between windspeed 

and output (0.52) is moderate, indicating that higher windspeed 

might positively impact the output. This is a notable 

relationship worth further exploration.  

Drone velocity shows weak negative correlations with 

altitude (-0.0031) and windspeed (0.0032), indicating no linear 

relationship. Its correlation with GPS error (0.000044) is 

extremely close to zero, meaning velocity and GPS error are 

almost completely uncorrelated. The correlation with output 

(0.13) is weak, showing only a slight positive relationship 

between velocity and output. GPS error has no strong 

relationships with altitude (0.011), windspeed (0.011), or 

velocity (0.000444), indicating almost no linear dependencies. 

However, the correlation between error and output (-0.55) is 

moderately negative, suggesting that as error increases, output 

decreases. This makes sense intuitively, as more errors could 

lead to reduced output performance. Output is positively 

correlated with altitude (0.14), windspeed (0.52), and velocity 

(0.13), suggesting that these factors might contribute to 

increased output, though the relationships are weak to 

moderate. Output has a negative correlation with error (-0.55), 
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showing that higher error values result in lower output, which 

is a critical insight for optimization efforts. Altitude, 

windspeed, and velocity have mostly weak or negligible 

correlations with each other. Most of the variables have very 

weak correlations with each other, indicating limited 

interdependency, except for the relationships involving output. 

Once the dataset is established, the next crucial step is 

developing the algorithm for the smart sprayer. This algorithm 

must include rules to determine the appropriate watering power 

based on various environmental variables. With the prepared 

dataset, which consists of 250 different conditions, the 

algorithm is designed to produce outputs that categorize 

watering power into six levels: Off, Very Low, Low, Medium, 

High, and Very High. In this study, K-Nearest Neighbors 

(KNN) algorithm was implemented to process the dataset. The 

features of the dataset, along with the prediction target, were 

carefully extracted and stored in separate variables for clarity 

and efficiency. The dataset was then split into a training set and 

a testing set in an 80:20 ratio, where 80% of the data was used 

to train the model, and 20% was reserved for testing its 

performance. This approach ensures that the model is exposed 

to a large portion of the data for learning while still being 

validated on unseen data to gauge its predictive accuracy. 

A weighted KNN variant was employed in this case, 

representing an extension of the basic KNN algorithm. In 

weighted KNN, each neighbor contributes differently to the 

final classification, with weights assigned based on the distance 

from the query point. This method helps the algorithm give 

more influence to closer neighbors, typically using distance-

inverse weights or kernel density estimates. By doing so, it 

improves the algorithm’s ability to make nuanced predictions, 

especially in cases where nearer points are more representative 

of the true condition. The use of weighted KNN is particularly 

relevant for a smart sprayer, as it allows the system to make 

more accurate and context-sensitive adjustments to the watering 

power based on sensor data. This is especially important when 

operating in diverse and unpredictable field conditions, where 

small changes in sensor readings can have significant impacts 

on the required water output. The results from the drone's sensor 

measurements, which reflect the algorithm's effectiveness, are 

illustrated in Fig. 7. 

To evaluate the performance of the model, a Confusion 

Matrix is employed. The Confusion Matrix provides several 

important metrics that help assess how well the model 

performs. These metrics include Precision (also known as 

Positive Predictive Value, or PPV), Recall (or True Positive 

Rate, TPR), Support, False Positive Rate (FPR), and False 

Discovery Rate (FDR). These metrics are crucial in providing a 

nuanced understanding of the model's strengths and 

weaknesses. For example, while a high Precision suggests that 

the model makes few incorrect positive predictions, a lower 

FDR highlights that false positives are minimal compared to 

overall positive predictions. Additionally, the Recall metric 

provides insights into how many of the actual positive instances 

are detected by the model, which is vital for applications where 

missing positive cases could have significant consequences. In 

this particular case, the K-Nearest Neighbors (KNN) model 

achieved an overall accuracy of 90.7%, demonstrating strong 

performance in correctly classifying data points. The detailed 

performance results can be further examined in terms of 

specific metrics: the True Positive Rate (TPR) and False 

Negative Rate (FNR) are illustrated in Fig. 8, while the 

Precision (PPV) and False Discovery Rate (FDR) are shown in 

Fig. 9. These visualizations provide a clearer view of the 

model's performance across different categories and enable a 

more granular analysis of its predictive capabilities. 

 

 
Fig. 7.  Scatter Plot Data from Sensors. 

 

Fig. 8 presents the True Positive Rate (TPR) and False Negative 

Rate (FNR) for six classes (Altitude, Wind Speed, Drone 

Velocity, GPS Error, and Sprayer Valve). These metrics are 

crucial in evaluating the performance of a classification model, 

particularly in determining its ability to correctly identify 

instances of each class. Altitude has the highest TPR (92%) and 

the lowest FNR (8%), indicating that the model is highly 

reliable for this class. GPS Error exhibits the lowest TPR 

(76.8%) and the highest FNR (23.2%), pointing to substantial 

challenges in correctly identifying instances of this class. 

Classes altitude, wind speed, and drone velocity have moderate 

TPRs ranging from 82.4% to 88.8%, and FNRs between 11.2% 

and 17.6%. These classes could benefit from improvements in 

feature differentiation or model tuning. Sprayer valve, with a 

TPR of 91.2% and FNR of 8.8%, also shows strong model 

performance, second only to Altitude. While the model 

performs well overall, particularly for altitude 0 and Sprayer 

valve, it faces significant challenges in accurately classifying 

GPS Error, which requires focused attention for performance 

improvement. Fine-tuning the model’s parameters or 

incorporating additional features might help in boosting 

performance, especially for the weaker classes. 

Fig. 9 shows the performance of a classification model in 

predicting different features related to a drone’s performance 

under two metrics: PPV (Positive Predictive Value) and FDR 

(False Discovery Rate). These metrics are used to evaluate the 

accuracy and error of the predictions for each feature. The PPV 

is 88.80%, indicating a high level of precision in predicting the 

correct altitude. This suggests the model is good at predicting 

the true positives for altitude. The FDR is 11.20%, which 

complements the PPV, representing a relatively low false 

discovery rate. This means there are only a small number of 

false positives in altitude predictions, reinforcing the model's 

accuracy. With a PPV of 84.40%, the model performs well in 
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predicting wind speed. This reflects good precision, with a 

strong ability to correctly identify true positives for wind speed. 

The FDR of 15.60% shows a slightly higher rate of false 

positives compared to altitude but is still relatively low, 

demonstrating that the model is reliable in predicting wind 

speed. The PPV drops to 76.50%, meaning the model is less 

precise in predicting drone velocity compared to altitude and 

wind speed. While this is still a reasonable value, it suggests 

more misclassifications. 

 

 
Fig. 8 Hasil TPR dan FNR Confusion Matrix.  

 
Fig. 9 PPV Results and FDR Confusion Matrix. 
 

The FDR of 23.50% reflects a higher false discovery rate, 

indicating the model struggles more with correctly classifying 

drone velocity compared to other features. The PPV for GPS 

Error is 74.40%, showing that the model's accuracy in 

predicting GPS error is moderate. While it correctly predicts 

most true positives, there is room for improvement. The FDR is 

25.60%, which is higher than for the other parameters. This 

suggests a higher proportion of false positives, meaning the 

model may be incorrectly predicting GPS error more often. 

With a PPV of 92.70%, the model performs the best at 

predicting the sprayer valve state. This very high precision 

indicates that the model is extremely reliable in classifying the 

correct valve settings. The FDR of 7.30% is the lowest among 

all the features, showing that the model rarely makes false 

positive predictions for the sprayer valve. 

The model performs exceptionally well for features like 

Sprayer Valve and Altitude, where it achieves high precision 

(PPV) and low false positive rates (FDR). Wind Speed 

predictions are also strong but slightly lower in performance. 

However, the model has more difficulty predicting Drone 

Velocity and GPS Error, as indicated by the lower PPV and 

higher FDR values for these features. This suggests that further 

tuning or improvements in the model might be necessary for 

these particular aspects to enhance overall performance. 

 

IV. CONCLUSION 

Experiments on the Smart Sprayer system using an 

autonomous drone demonstrate that classifying watering 

strength with the weighted KNN method achieves an accuracy 

of 90.7%. The dataset consists of 3,750 samples, divided into 

five classes of 625 data points each, with an 80:20 split between 

training and test sets. Watering discharge strength is classified 

into six categories: Stop, Very Low, Low, Medium, High, and 

Very High. The high accuracy achieved suggests that the 

proposed method holds significant promise for smart sprayer 

systems on autonomous drones. The model also performs well 

on key metrics such as Precision and Recall, particularly in 

predicting features like Altitude and Sprayer Valve, where it 

exhibits high Positive Predictive Values and low False 

Discovery Rates. However, challenges remain in accurately 

classifying Drone Velocity and GPS Error, which show lower 

Precision and higher False Discovery Rates. To enhance 

performance, especially in these weaker areas, further 

refinement in feature differentiation and model tuning is 

recommended. Future research could focus on deploying the 

system in real agricultural environments and upgrading 

hardware components to further optimize performance. 
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