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Abstract— Precision agriculture has gained significant attention
for its potential to optimize resource use and enhance crop
productivity. Autonomous drones equipped with smart systems
are increasingly being used for tasks such as watering,
fertilization, and monitoring. This paper presents the development
and evaluation of a Smart Sprayer system that utilizes an
autonomous drone for precise water discharge control. The system
employs a weighted K-Nearest Neighbors (KNN) algorithm to
classify watering intensity, achieving an accuracy of 90.7%. A
dataset of 3,750 samples was used, evenly distributed across six
classes (Stop, Very Low, Low, Medium, High, and Very High) and
split 80:20 for training and testing. The model demonstrated
strong performance in key metrics such as Precision and Recall,
excelling particularly in predicting features like Altitude and
Sprayer Valve, as reflected in high Positive Predictive Values and
low False Discovery Rates. However, challenges remain in
accurately classifying certain features, including Drone Velocity
and GPS Error, where lower Precision and higher False Discovery
Rates were observed. These limitations highlight the need for
further model refinement and tuning. Future work will focus on
real-world deployment and hardware optimizations to enhance
system performance in autonomous agricultural operations.

Index Terms— Smart agriculture, Autonomous farming drones,
K-Nearest Neighbors, Sprayer system, Wireless.

I. INTRODUCTION

S an agricultural country, Indonesia's agricultural sector
not only fulfills the food needs of its population but also
plays a significant role in the national economy [1][2].
Agriculture serves as the backbone of Indonesia's economy,
contributing 14% to the national GDP. Additionally, 33% of the
workforce is employed in the agricultural sector, making it the
second-largest sector in terms of labor absorption, particularly
in livestock farming. However, the contribution of agriculture
to Indonesia's GDP has begun to decline [3].
Productivity in the agricultural and food sectors has faced
numerous challenges in recent years. These challenges stem
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from several factors, including the shrinking availability of
agricultural land, the depletion of natural resources, and the
slow advancement of agricultural technology due to the
continued reliance on traditional methods [4]. One potential
solution is the integration of modern technology into
agriculture. This can be achieved through the implementation
of smart agriculture using unmanned aerial vehicles (UAVS),
enabling autonomous agricultural operations and reducing
human labor dependency [5-7].

UAVs offer relatively low operating costs and are designed
for high maneuverability, allowing them to access hard-to-
reach areas with ease. Their compact size enables them to fly at
low altitudes over crops, ensuring high precision in various
tasks such as real-time crop monitoring, pesticide spraying, and
irrigation. By automating tasks that traditionally required
substantial human labor, UAV technology enhances both
operational efficiency and effectiveness. Moreover, UAVs can
be equipped with advanced sensors, including multispectral and
thermal cameras, to provide detailed, real-time data on crop and
soil conditions. This data empowers farmers to make informed
and timely decisions, ultimately improving agricultural
productivity and reducing costs. The adoption of UAV
technology not only yields significant economic benefits but
also supports more sustainable agricultural practices [7-9].

The potential of agricultural productivity has yet to be fully
realized, primarily due to inefficiencies in crop monitoring,
irrigation patterns, and pesticide application over large areas of
farmland [10][11]. To address these challenges, the use of
drones has become essential. By integrating flight controllers,
drones can autonomously perform spraying over extensive
fields while accounting for various factors to enhance irrigation
efficiency [12][13]. Therefore, developing an autonomous
drone-based irrigation system that considers variables such as
speed, spraying power, and soil coverage is necessary to
maximize the effectiveness of drone utilization.

Several studies have been conducted on the use of
autonomous drones for pesticide spraying. In this context,
analyzing droplet deposition characteristics has been a key
focus in pesticide application research. The study conducted in
[14] identified several independent factors that influence the
deposition characteristics of droplets sprayed by UAVs.
Additionally, in UAV-based spraying, optimizing influencing
parameters can enhance precision in plant irrigation. In [15], an
experiment was conducted to assess the effectiveness of canopy
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structures using four factors: Spray Application Volume Rate
(SV), Flight Speed (FS), Flight Height (FH), and Flight
Direction (FD). Similarly, [16] examined air spraying and
droplet distribution using the Box-Behnken method.

The development of UAV spraying systems extends beyond
hardware improvements. To enhance accuracy and efficiency,
researchers have also explored machine learning integration.
Recent advancements in computing and data availability have
driven progress in machine learning, particularly deep learning
[17]. Numerous studies have examined machine learning
applications in UAVs. In [18], an analysis of the latest
advancements and trends in reinforcement learning (RL)-based
UAYV applications was conducted, identifying potential future
research directions. The application of machine learning in
drone design and development can significantly enhance
operational efficiency and effectiveness.

Machine learning encompasses various models for analyzing
and classifying data, one of which is K-Nearest Neighbors
(KNN) [19-21]. Given a dataset, the algorithm predicts
relationships between new and existing data, classifying new
inputs into the most suitable categories based on learned
patterns [22—26]. This algorithm can be applied to improve the
accuracy and efficiency of drone spraying by optimizing input
parameters. In this study, KNN is proposed for classifying
watering force using sensor data such as altitude, wind speed,
and drone velocity.

This research focuses on developing an optimal irrigation
method for agricultural drones using KNN. The objective is to
establish an effective and efficient drone-based watering system
that can be successfully implemented in the agricultural
industry.

Il. METHOD

A. Data Collection

This research was conducted at the Basic Science Service
Center, Padjadjaran University, Indonesia, in an area designed
to resemble agricultural land. The field test involved 12 drone
flights, using four different trajectory types and three different
altitudes. During the flights, data was collected on altitude,
wind speed, drone speed, and latitude and longitude
coordinates.

The drone used in this test had an F450 frame, and the flight
controller was a Pixhawk 2.4.6, which managed flight and
landing operations. The drone was equipped with an M8N
SE100 Radiolink GPS module for location tracking during
flight. A Raspberry Pi 4 was used as the microcontroller to run
the Python program in this study, enabling wireless
communication. For watering purposes, DC motors were used.
The Pixhawk serves as the drone's primary controller,
managing all aspects of flight, including flight commands,
forward movement, and landing. Additionally, Pixhawk has the
capability to store data such as altitude, drone location, and
waypoints for flight missions.

In this study, the Mission Planner application was used for
drone calibration and configuration. Mission Planner also
enables the creation of flight missions by defining waypoints,
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which serve as the designated flight path for the drone to follow.
The Micro Air Vehicle Link (MAVLink) protocol is used for
telemetry and communication, facilitating the connection
between Pixhawk, acting as the flight controller, and the
Raspberry Pi 4, functioning as the microcontroller. By utilizing
MAVLink, the Raspberry Pi can receive various types of drone
data stored on Pixhawk.

The Raspberry Pi is responsible for controlling the watering
force of the DC motor through a motor driver. It communicates
with the motor using the Raspberry Pi's GPIO (General Purpose
Input/Output) pins, which are configured via the Python library.
The DC motor is connected to a water source through a small
hose equipped with a watering nozzle. When the motor is
activated, water is drawn and flows through the nozzle. The
Raspberry Pi regulates the watering force by adjusting the
voltage supplied to the motor driver. In the watering system, the
data used to regulate watering force includes altitude, wind
speed, and drone speed. Meanwhile, the decision to activate
watering is based on predefined waypoint data assigned to the
drone.
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Fig. 1. Block Diagram of the Smart Sprayer System on a Sprayer Drone.

A. K-Nearest Neighbors (KNN) method

The data obtained from the variables is processed using the
K-Nearest Neighbors (KNN) method. KNN is considered one
of the simplest algorithms in machine learning. While it can be
used for both classification and regression, it is more commonly
applied to classification tasks. Given a dataset, the algorithm
predicts the relationship between unseen data and existing data.
Based on these predictions, it classifies new data into the most
suitable categories. As a result, the KNN algorithm enables
reliable classification of new data.

In this study, weighted KNN (WKNN) was used with the goal
of developing a technique that does not rely on an arbitrary
choice of k, which could lead to a high classification error. In
this approach, the number of nearest neighbors is implicitly
determined by the weight: if k is too large, it is automatically
adjusted to a lower value.

For data calculation using the KNN method, the algorithm
structure is described as follows. Suppose L={(yi, Xi), i =
1,..,nL} is a set of learnings from observations x; with class
membership given y;, and suppose X is a new observation whose
class y must be predicted. Then find k+1 nearest neighbors of x
based on the distance function d(x,x(;). The neighbors to
(k+1) are used for the normalization of k least distance via the
formula:
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Fig. 2. Smart Sprayer System on Autonomous Drone Flowchart.
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which is a distance function for k+1 data. Next, transform the
normalized distance D(; using the kernel function K to the
weight wi;y = K(D;). As a prediction for class y membership
from observations x, select the class that shows the weighted
majority of the nearest neighbors k. So that the following
formula is obtained:

9 = max, Ci, wiy | oy = 1)) 2

where after the determination of the similarity size for the
observations in the learning set, each new case (y,x) is classified
into the class with the greatest weight added.

I1l1. RESULTS AND DISCUSSION

The data collection process involves gathering sensor
measurements from the drone's smart sprayer. The collected
data includes altitude, wind speed, drone speed, and GPS errors.
The dataset comprises 3,750 samples, categorized into six
distinct classes: Off, Very Low, Low, Medium, High, and Very
High. Each class contains an equal number of 625 samples to
ensure a balanced data distribution. Maintaining this balance is
essential to prevent model bias toward classes with more data,
which could lead to inaccurate predictions and degrade overall
model performance. Fig. 4 presents the sensor measurement
results from the drone's smart sprayer, while Table 1 provides a
detailed description of the dataset.
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Fig. 4. Raw data from the drone's smart sprayer: Altitude (blue), wind speed
(green), drone speed (sky blue), Error GPS (yellow).

——Velocity (m/s)

When determining the classification range of data in a
dataset, several methods can be employed, each offering
distinct advantages. In this experiment, however, the Box Plot
method was chosen for its ability to provide a clear and concise
summary of data distribution. This method relies on five key
statistical measures: the minimum, first quartile (Q1), median,
third quartile (Q3), and maximum. These metrics not only offer
insights into the central tendency and spread of the data but also
help identify outliers and overall variability within the dataset.
By leveraging the Box Plot method, we can visually and
numerically refine classification ranges, enabling more precise
categorizations. Its robustness lies in its ability to divide data
into quartiles, making it particularly useful for datasets with
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skewed distributions or the presence of outliers. This enhances
classification accuracy by ensuring that data is categorized
based on meaningful thresholds rather than arbitrary divisions.
The results of applying the Box Plot method to this dataset are
illustrated in Fig. 5, where the transformation of data into
quartiles can be observed.

TABLE |
SMART SPRAYING DRONE DATASET DESCRIPTION
Altitude Wind Speed Velocity Error Output
(m) (m/s) (m/s) GPS (%)
Count 3750 3750 3750 3750 3750
mean 3.8 3.73 3.01 3.74 2.5
Std 2.24 221 1.74 3.3 1.7
min 0.004 0.002 0.003 0.002 0
25% 1.87 1.88 15 15 1
50% 3.75 3.64 3.02 2.97 2.5
75% 5.6 5.5 454 4.45 4
Max 8 8 6 15 15
8 - 8
6 61 - T
4 44 | {
2 1 2 PJ?
0 - 01
altitude windspeed
6 - 15.0
51 | 12.5 1
4 10.0
3 1 7.5 1 1
2 5.0 1
1 2.5 1
0 - - 0.0 —
velocity Error

Fig. 5. Data Plot Results into Box Chart.

Each variable in a dataset exhibits some level of correlation
with other variables, representing the strength and direction of
their relationship. Correlations can be classified into two types:
negative correlation, where the correlation coefficient is less
than 0, indicating that as one variable increases, the other
decreases, and positive correlation, where the coefficient is
greater than 0, meaning both variables tend to increase or
decrease together. When the correlation coefficient between
two variables is exactly 0, it signifies the absence of any linear
relationship between them (no correlation). In Fig. 6, the
heatmap illustrates the relationships between variables in the
dataset, helping to quickly assess which variables are strongly
interconnected and which are independent. This visualization is
particularly useful for identifying multicollinearity, where
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multiple variables are highly correlated, potentially affecting
the performance of certain models like regression analysis.
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Fig. 6. Correlation Between Variables using Heatmaps

The heatmap table in Fig. 6 gives a correlation matrix of five
variables: altitude, windspeed, drone velocity, GPS error, and
output (sprayer valve). Each value in the matrix represents the
correlation coefficient between two variables, which ranges
from -1 to 1. Its correlation with windspeed (-0.0014) and
velocity (-0.0031) is very close to zero, indicating no linear
relationship between altitude and these variables. Altitude
shows a weak positive correlation with error (0.011), but this is
still quite minimal, suggesting almost no connection. The
correlation with output (0.14) is stronger compared to the other
variables but still weak. This implies a mild positive
relationship between altitude and output, meaning as altitude
increases, output slightly tends to increase. Windspeed and
drone velocity have a weak negative correlation with altitude (-
0.0014), and a very weak positive correlation with velocity
(0.0032), respectively, again suggesting almost no connection.
The correlation with error (0.011) is slightly positive but still
insignificant. Interestingly, the correlation between windspeed
and output (0.52) is moderate, indicating that higher windspeed
might positively impact the output. This is a notable
relationship worth further exploration.

Drone velocity shows weak negative correlations with
altitude (-0.0031) and windspeed (0.0032), indicating no linear
relationship. Its correlation with GPS error (0.000044) is
extremely close to zero, meaning velocity and GPS error are
almost completely uncorrelated. The correlation with output
(0.13) is weak, showing only a slight positive relationship
between velocity and output. GPS error has no strong
relationships with altitude (0.011), windspeed (0.011), or
velocity (0.000444), indicating almost no linear dependencies.
However, the correlation between error and output (-0.55) is
moderately negative, suggesting that as error increases, output
decreases. This makes sense intuitively, as more errors could
lead to reduced output performance. Output is positively
correlated with altitude (0.14), windspeed (0.52), and velocity
(0.13), suggesting that these factors might contribute to
increased output, though the relationships are weak to
moderate. Output has a negative correlation with error (-0.55),
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showing that higher error values result in lower output, which
is a critical insight for optimization efforts. Altitude,
windspeed, and velocity have mostly weak or negligible
correlations with each other. Most of the variables have very
weak correlations with each other, indicating limited
interdependency, except for the relationships involving output.

Once the dataset is established, the next crucial step is
developing the algorithm for the smart sprayer. This algorithm
must include rules to determine the appropriate watering power
based on various environmental variables. With the prepared
dataset, which consists of 250 different conditions, the
algorithm is designed to produce outputs that categorize
watering power into six levels: Off, Very Low, Low, Medium,
High, and Very High. In this study, K-Nearest Neighbors
(KNN) algorithm was implemented to process the dataset. The
features of the dataset, along with the prediction target, were
carefully extracted and stored in separate variables for clarity
and efficiency. The dataset was then split into a training set and
a testing set in an 80:20 ratio, where 80% of the data was used
to train the model, and 20% was reserved for testing its
performance. This approach ensures that the model is exposed
to a large portion of the data for learning while still being
validated on unseen data to gauge its predictive accuracy.

A weighted KNN variant was employed in this case,
representing an extension of the basic KNN algorithm. In
weighted KNN, each neighbor contributes differently to the
final classification, with weights assigned based on the distance
from the query point. This method helps the algorithm give
more influence to closer neighbors, typically using distance-
inverse weights or kernel density estimates. By doing so, it
improves the algorithm’s ability to make nuanced predictions,
especially in cases where nearer points are more representative
of the true condition. The use of weighted KNN is particularly
relevant for a smart sprayer, as it allows the system to make
more accurate and context-sensitive adjustments to the watering
power based on sensor data. This is especially important when
operating in diverse and unpredictable field conditions, where
small changes in sensor readings can have significant impacts
on the required water output. The results from the drone's sensor
measurements, which reflect the algorithm's effectiveness, are
illustrated in Fig. 7.

To evaluate the performance of the model, a Confusion
Matrix is employed. The Confusion Matrix provides several
important metrics that help assess how well the model
performs. These metrics include Precision (also known as
Positive Predictive Value, or PPV), Recall (or True Positive
Rate, TPR), Support, False Positive Rate (FPR), and False
Discovery Rate (FDR). These metrics are crucial in providing a
nuanced understanding of the model's strengths and
weaknesses. For example, while a high Precision suggests that
the model makes few incorrect positive predictions, a lower
FDR highlights that false positives are minimal compared to
overall positive predictions. Additionally, the Recall metric
provides insights into how many of the actual positive instances
are detected by the model, which is vital for applications where
missing positive cases could have significant consequences. In
this particular case, the K-Nearest Neighbors (KNN) model
achieved an overall accuracy of 90.7%, demonstrating strong
performance in correctly classifying data points. The detailed
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performance results can be further examined in terms of
specific metrics: the True Positive Rate (TPR) and False
Negative Rate (FNR) are illustrated in Fig. 8, while the
Precision (PPV) and False Discovery Rate (FDR) are shown in
Fig. 9. These visualizations provide a clearer view of the
model's performance across different categories and enable a
more granular analysis of its predictive capabilities.

Original data set: Dataset_error

& AR 4
z et 4 o o
3k . g f' ﬁ’".
ety AR e TN

2r .‘.‘:.::.:.:.‘ o0 . o ~'.‘ il .. .l,&.
A R N R L Kt o, v s

T ls‘?ﬁ:_? % 5 '%fzﬁ.::-f'};
0 QO!.:C e # .o‘ '=.f':o‘

altitude
Fig. 7. Scatter Plot Data from Sensors.

Fig. 8 presents the True Positive Rate (TPR) and False Negative
Rate (FNR) for six classes (Altitude, Wind Speed, Drone
Velocity, GPS Error, and Sprayer Valve). These metrics are
crucial in evaluating the performance of a classification model,
particularly in determining its ability to correctly identify
instances of each class. Altitude has the highest TPR (92%) and
the lowest FNR (8%), indicating that the model is highly
reliable for this class. GPS Error exhibits the lowest TPR
(76.8%) and the highest FNR (23.2%), pointing to substantial
challenges in correctly identifying instances of this class.
Classes altitude, wind speed, and drone velocity have moderate
TPRs ranging from 82.4% to 88.8%, and FNRs between 11.2%
and 17.6%. These classes could benefit from improvements in
feature differentiation or model tuning. Sprayer valve, with a
TPR of 91.2% and FNR of 8.8%, also shows strong model
performance, second only to Altitude. While the model
performs well overall, particularly for altitude O and Sprayer
valve, it faces significant challenges in accurately classifying
GPS Error, which requires focused attention for performance
improvement. Fine-tuning the model’s parameters or
incorporating additional features might help in boosting
performance, especially for the weaker classes.

Fig. 9 shows the performance of a classification model in
predicting different features related to a drone’s performance
under two metrics: PPV (Positive Predictive Value) and FDR
(False Discovery Rate). These metrics are used to evaluate the
accuracy and error of the predictions for each feature. The PPV
is 88.80%, indicating a high level of precision in predicting the
correct altitude. This suggests the model is good at predicting
the true positives for altitude. The FDR is 11.20%, which
complements the PPV, representing a relatively low false
discovery rate. This means there are only a small number of
false positives in altitude predictions, reinforcing the model's
accuracy. With a PPV of 84.40%, the model performs well in
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predicting wind speed. This reflects good precision, with a
strong ability to correctly identify true positives for wind speed.
The FDR of 15.60% shows a slightly higher rate of false
positives compared to altitude but is still relatively low,
demonstrating that the model is reliable in predicting wind
speed. The PPV drops to 76.50%, meaning the model is less
precise in predicting drone velocity compared to altitude and
wind speed. While this is still a reasonable value, it suggests
more misclassifications.

Model 1

() 92.0% 08% | 2.4% 8.0%

11.2%

17.6%

True Class

16.8%

23.2%

8.8%

0 1 2 3 4 5 TPR FNR
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Fig. 8 Hasil TPR dan FNR Confusion Matrix.
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Fig. 9 PPV Results and FDR Confusion Matrix.

The FDR of 23.50% reflects a higher false discovery rate,
indicating the model struggles more with correctly classifying
drone velocity compared to other features. The PPV for GPS
Error is 74.40%, showing that the model's accuracy in
predicting GPS error is moderate. While it correctly predicts
most true positives, there is room for improvement. The FDR is
25.60%, which is higher than for the other parameters. This
suggests a higher proportion of false positives, meaning the
model may be incorrectly predicting GPS error more often.
With a PPV of 92.70%, the model performs the best at
predicting the sprayer valve state. This very high precision
indicates that the model is extremely reliable in classifying the
correct valve settings. The FDR of 7.30% is the lowest among
all the features, showing that the model rarely makes false
positive predictions for the sprayer valve.

The model performs exceptionally well for features like
Sprayer Valve and Altitude, where it achieves high precision
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(PPV) and low false positive rates (FDR). Wind Speed
predictions are also strong but slightly lower in performance.
However, the model has more difficulty predicting Drone
Velocity and GPS Error, as indicated by the lower PPV and
higher FDR values for these features. This suggests that further
tuning or improvements in the model might be necessary for
these particular aspects to enhance overall performance.

IVV. CONCLUSION

Experiments on the Smart Sprayer system using an
autonomous drone demonstrate that classifying watering
strength with the weighted KNN method achieves an accuracy
of 90.7%. The dataset consists of 3,750 samples, divided into
five classes of 625 data points each, with an 80:20 split between
training and test sets. Watering discharge strength is classified
into six categories: Stop, Very Low, Low, Medium, High, and
Very High. The high accuracy achieved suggests that the
proposed method holds significant promise for smart sprayer
systems on autonomous drones. The model also performs well
on key metrics such as Precision and Recall, particularly in
predicting features like Altitude and Sprayer Valve, where it
exhibits high Positive Predictive Values and low False
Discovery Rates. However, challenges remain in accurately
classifying Drone Velocity and GPS Error, which show lower
Precision and higher False Discovery Rates. To enhance
performance, especially in these weaker areas, further
refinement in feature differentiation and model tuning is
recommended. Future research could focus on deploying the
system in real agricultural environments and upgrading
hardware components to further optimize performance.
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