
Vol.16/No.2 (2024) INTERNETWORKING INDONESIA JOURNAL 17

 ISSN: 1942-9703 / CC BY-NC-ND

Abstract— Fuzzing is an automated black box testing method

that evaluates abnormal inputs to trace targeted vulnerabilities.

In this research, fuzzing is implemented on the Kawn

Subscriptions Manager application. Further, we use the mutation

testing method to assess the ability and the success of fuzzing in

finding vulnerabilities in the application. The web fuzzer used in

fuzzing is FFUF, and the input or payload tested is generated

based on the word list required to test each function. A total of 4

mutants were generated and by performing mutation testing,

those 4 mutants were successfully killed. Therefore, a 100%

mutation score is obtained. It means that the fuzzing method

using the FFUF web fuzzer successfully found vulnerabilities in

software applications. In addition, it was found that the Django

application has implemented strict security against the POST

request method. Based on the research findings, we suggest

fuzzing all functions in future research. In addition, it is

necessary to compare fuzzing with other similar methods to

identify the capability and reliability of fuzzing. In addition, our

research highlights the importance of integrating comprehensive

security measures and testing frameworks in the web application

development lifecycle. By using FFUF, we demonstrate an

efficient approach to identify and mitigate potential security

threats, ensuring robust protection against cyberattacks.

Index Terms— Fuzzing, FFUF, Mutation testing, Payload,

Software security.

I. INTRODUCTION

UZZ testing is a promising technique that has been used to

uncover many bugs and vulnerabilities [1]. This technique

involves creating many test cases to repeatedly evaluate target

programs while observing any exceptions that occur. These

exceptions serve as signals of potential security issues.

Typically, fuzz testing uses a queue of seeds, which are

particularly interesting inputs, and new inputs are

continuously generated by mutating these seeds in an endless

loop [2]. Compared to other methods, fuzzing requires little

A. Sinaga is a with the Faculty of Vocational Studies at Institut Teknologi

Del (IT Del), Indonesia (e-mail: aldo@del.ac.id*).

I. Habeahan is with the Faculty of Vocational Studies at Institut Teknologi
Del (IT Del), Indonesia (e-mail: ivanowskyfernandez@gmail.com).

R. A. Sianturi is with the Faculty of Vocational Studies at Institut

Teknologi Del (IT Del), Indonesia (e-mail: riyanthi@del.ac.id).
W. Susilo is with the Faculty of Engineering and Information Sciences at

the University of Wollongong, Australia (e-mail: willy_susilo@uow.edu.au).

Y. Pratama is with the Graduate School of Science and Technology at Nara
Institute of Science and Technology, Japan (e-mail:

yohanssen.pratama.yl0@is.naist.jp).

knowledge of the target. It can be easily implemented in large

applications and thus has become the most popular

vulnerability discovery solution, especially in the industry [3].

In this research, the web application that will use the

fuzzing method is Kawn Subscriptions Manager. This web-

based application is designed to manage subscription packages

for F&B (Food and Beverage) businesses on the Kawn

application. Software testing with fuzzing methods is done in

real execution; therefore, fuzzing obtains a high level of

accuracy. One tool that can be used in this fuzz method is the

FFUF tool. FFUF, or "Fuzz Faster You Fool", is a fast web

fuzzer written in Go that allows typical directory discovery,

virtual host discovery (without DNS records), and GET and

POST parameter fuzzing.

In Kawn Subscriptions Manager, there is also data on

clients, namely F&B businesspeople, essential to keeping safe.

For this reason, it is vital to apply fuzzing to the Kawn

Subscriptions Manager. However, fuzzing may not be

effective in testing different web applications because fuzzing

requires sufficient resources, such as time and computing

power, to generate extensive and diverse inputs [3]. Therefore,

a fault-based testing method with a mutation analysis

approach is used to measure the effectiveness of fuzzing

testing in identifying vulnerabilities in web applications or

software [4].

Mutation-based fuzzing is a quality assurance tool that is

becoming increasingly popular for its ability to uncover

critical bugs and security vulnerabilities in widely used

software systems [5]. Mutation testing plays a crucial role in

this context by replacing or modifying existing parts of the

source code, resulting in code variants known as 'mutants'.

This approach is not just about identifying bug disclosure

results generated by fuzzer, but also about providing mutation

scores as additional feedback to evaluate the fuzzing results

contained in the Kawn Subscriptions Manager. Its inclusion in

the testing process ensures a comprehensive examination of

the software's vulnerabilities, instilling confidence in the

security professionals and researchers. According to Jia and

Harman [6], mutation testing enhances the fault detection

capability of testing strategies, making it an invaluable tool in

software security assessments [7]. By employing mutation

testing, we ensure that the vulnerabilities are not only detected

but also that the detection mechanisms are rigorously

validated, thereby reinforcing the overall security posture of

the application [8].

Applying Fuzzing in Software Testing: A Case

Study on Kawn Subscriptions Manager

Arnaldo Marulitua Sinaga, Ivanowsky Fernandes Habeahan, Riyanthi Angrainy Sianturi, Willy Susilo,

and Yohanssen Pratama

F

18 INTERNETWORKING INDONESIA JOURNAL Sinaga Et Al.

This paper consists of five sections: section 2 explains the

studied methods, namely Fuzzing and Mutation Testing.

Section 3 explains the studied object and conducted

experiment. Section 4 explains the results obtained from the

experiment. Section 5 describes the conclusions and potential

further research.

II. PROCEDURE FOR PAPER SUBMISSION

A. Software Security Testing

Software systems and applications are frequently released

with numerous features and settings [9]. These elements cater

to users and the underlying platforms for various purposes,

including architectural configurations, virtualization,

performance optimization, security and access control,

privacy, and system-level interactions [10]. Software testing is

a solution to verify whether the built application is by the

expected requirements [11]. Testing is more than just

debugging. Testing is not only used to find defects and fix

them. It is also used in validation, verification processes, and

reliability measurements. Therefore, software testing is

essential to ensure no errors in the application [12].

Software testing aims to identify the mistakes and features

or functions that do not match the expected requirements so

that they can be corrected immediately. Properly tested

software products can ensure quality, security, and reliability.

Testing is a viable approach to detecting implementation bugs

that have a security impact, aka vulnerability [13]. A software

vulnerability is a security flaw, glitch, or weakness in software

code that an attacker could exploit to harm the stakeholders of

a software system [14]. Therefore, it can be beneficial in terms

of cost efficiency, time savings, and, most importantly,

customer satisfaction.

Software security is the idea of designing software to

continue functioning correctly in the face of malicious attacks

[7]. Web application security is a significant part of any web-

based online business. The widely accessible nature of the

Internet exposes web assets to possible attacks from multiple

locations with varying degrees of scope and sophistication.

Web application security is about the security of web

applications, websites, and web services such as APIs. It also

aims to address vulnerabilities [15].

Ensuring robust web application security involves

implementing various practices and technologies designed to

detect, prevent, and mitigate potential threats. This includes

the use of secure coding practices, regular security testing, and

the adoption of frameworks and tools that provide built-in

security features [14]. Additionally, it is essential to stay

updated on the latest security threats and trends, such as SQL

injection, cross-site scripting (XSS), and distributed denial-of-

service (DDoS) attacks, which can exploit vulnerabilities in

web applications. By regularly conducting vulnerability

assessments and penetration testing, organizations can identify

and rectify weaknesses before they are exploited by malicious

actors. Furthermore, integrating security into the software

development lifecycle (SDLC) ensures that security

considerations are addressed at every stage of development,

thereby enhancing the overall resilience of web applications

against cyber threats [16].

Security testing is a process carried out to find security

vulnerabilities in software or applications [13]. It will have

various tests to ensure that the developed system is fully

protected against multiple threats of cyberattacks. The purpose

of this testing is to find loopholes and weaknesses in the

system that can lead to loss of data or company reputation.

One type of software security testing is vulnerability scanning.

Vulnerability Scanning (Vuln Scan) is an automated data

security test. Software scans for system vulnerabilities such as

cross-site scripting, SQL injection, command injection, path

traversal, and insecure server configuration. This tool is often

referred to as part of Dynamic Application Security Testing

(DAST). DAST tools dynamically analyze a running

application's responses to various inputs, simulating potential

attack scenarios in real-time [16]. According to OWASP [17],

DAST is crucial for detecting vulnerabilities that occur only

during runtime, making it an essential component of a

comprehensive security testing strategy. By combining DAST

with other testing methods such as fuzzing and static analysis,

organizations can achieve a multi-layered defense mechanism,

thereby significantly enhancing the security posture of their

applications [18].

Vulnerability itself is a deficiency or defect in a computer

system that can be found in software, hardware, protocols, and

even in security policies. Vulnerability is an application error

that will eventually cause failure to violate security properties

that should constantly be monitored [13]. Vulnerability is what

can allow attacks that disrupt the system in terms of

confidentiality, integrity, and availability. The vulnerability

causes severe damage to information systems and software.

Therefore, many efforts have been mobilized to overcome

these vulnerabilities. One of the right solutions to overcome

this problem is the fuzzing method. Fuzzing, by systematically

injecting malformed inputs and monitoring for unexpected

behaviors, offers a proactive approach to uncovering hidden

flaws. As noted by Tsankov et al. [18], the effectiveness of

fuzzing in revealing critical vulnerabilities has made it a

cornerstone in contemporary cybersecurity strategies. By

identifying and addressing these vulnerabilities early,

organizations can significantly reduce the risk of exploitation

and enhance the robustness of their systems [19].

B. Fuzzing

It is also essential to understand that internet security testing

is not only about testing security functions such as

authentication and authorization that can be implemented in

applications. It is equally important to test the secure

implementation of other functions (e.g., using business logic,

correct input validation, and output coding) [7]. Properly

tested software products can ensure quality, safety, and

reliability [13]. Fuzzing or fuzz testing is one of the black box

testing methods performed in automation, which evaluates

abnormal inputs to trigger targeted vulnerabilities [20]. Barton

Miller coined the term fuzzing, referred to as "the act of

software torture". Fuzz testing is a promising technique that

Vol.16/No.2 (2024) INTERNETWORKING INDONESIA JOURNAL 19

 ISSN: 1942-9703 / CC BY-NC-ND

has been used to uncover many bugs and vulnerabilities [1].

Compared to other methods, fuzzing requires little knowledge

of the target. It can be easily implemented in large applications

and thus has become the most popular vulnerability discovery

solution, especially in the industry. This method is used by

major industries such as Google, Microsoft, Amazon, Meta,

and others [7].

In software testing, fuzzing stands out for its unique

approach. Unlike other methods that use predefined test

scenarios, fuzzing relies on random or arbitrary inputs to test

the application. This approach is driven by the main purpose

of fuzzing, which is to find vulnerabilities or bugs in the

application by testing how it handles invalid or unexpected

inputs. This distinct approach sets fuzzing apart from other

testing methods.

Fuzzing, by its nature, does not have a definite 'expected

result' like other testing methods. Its focus is on studying the

system by providing unexpected inputs to see how the

application or system responds. The goal of fuzzing is to

uncover unexpected or unwanted conditions that can lead to

bugs or threaten the system's security. This goal underscores

the unique value of fuzzing in software testing.

One of the buzzers that can be used in fuzzing is FFUF.

FFUF, or "Fuzz Faster You Fool", is a fast web fuzzer written

in Go that allows typical directory discovery, virtual host

discovery (without DNS records), and GET and POST

parameter fuzzing. FFUF is inspired by Wfuzz, an older but

very similar web fuzzer [13]. The main advantage of FFUF is

in terms of performance over other web fuzzers such as

WFUZZ. The way FFUF works is by compiling a list of words

that will be used as input for the "fuzzed requests" that are

executed.

Despite the advantages, fuzzing alone cannot address all

potential vulnerabilities. A combined approach utilizing static

and dynamic analysis methods can offer a more

comprehensive security assessment. As mentioned by

McGraw [14], integrating static code analysis with fuzzing can

uncover vulnerabilities that might be missed when these

techniques are used in isolation. Static analysis examines the

code structure and logic without executing the program,

identifying potential security flaws early in the development

cycle. This preemptive strategy, coupled with the reactive

nature of fuzzing, creates a robust defense mechanism against

a wide range of security threats. Additionally, continuous

monitoring and updating of security policies, as emphasized

by Viega and McGraw, are crucial to adapting to the evolving

threat landscape and ensuring sustained protection against new

vulnerabilities [21].

C. Mutation Testing

Mutation testing was initially proposed by DeMillo as a

method to evaluate the effectiveness of a test suite and to

identify areas needing further testing [22]. This process

involves repeatedly introducing artificial bugs (mutations) into

the software to see if any test cases fail as a result. If at least

one test case detects the mutation and fails, the mutant is

considered "killed," indicating the test suite's effectiveness for

that mutant. Conversely, if no test cases fail, the mutant

"survives," which can highlight a weakness in the test suite,

unless the mutant is equivalent and cannot be detected.

Mutation testing is a testing technique that modifies the

program by inserting faults into it to create new versions

called mutants [23]. The original program modification

process is done by changing the syntax in the program with

the mutation operator. Mutation testing is conducted to

measure the adequacy of the generated test suite. Ultimately, a

mutation score is calculated as the percentage of killed

mutants out of all non-equivalent mutants tested. A higher

mutation score indicates a more effective test suite, while a

lower score suggests less effectiveness.

In generating mutants, the program code can be modified by

inserting faults into the program. Program modification is

done using mutation operators by changing the syntax in the

program. Some mutation operators that can be implemented in

Python programs include [7]:

● AOD - Arithmetic Operator Deletion

● AOR - Arithmetic Operator Replacement

● ASR - Assignment Operator Replacement

● COD - Conditional Operator Deletion

● COI - Conditional Operator Insertion

● CRP - Constant Replacement

● ROR - Relational Operator Replacement

● IOD - Overriding Method Deletion

● IOP - Overridden Method Calling Position Change

● SCD - Super Calling Deletion

● SCI - Super Calling Insertion

● DDL - Decorator Deletion

● SDL - Statement Deletion

The measurement used for mutation testing is named

mutation score. The mutation score is calculated by using the

following formula [1].

𝑠𝑐𝑜𝑟𝑒 =
𝑚𝑢𝑡𝑘

𝑚𝑢𝑡𝑠+𝑚𝑢𝑡𝑘
× 100% (1)

The mutation score is the ratio of killed mutants (𝑚𝑢𝑡𝑘)

divided by all mutants (the sum of killed and survived

mutants). Suppose the execution of mutants with test inputs

given PASS or the execution results of mutant test inputs are

different from the original. In that case, it means that the

defect represented by this mutant is detected in such a way

that the mutant is killed. Otherwise, the mutant survives,

which means that the given input is not able to detect such a

defect [7].

Generally, mutation scores can be used to reflect the ability

of a given input to detect bugs. Higher mutation scores

indicate that the test inputs are effective in identifying and

killing mutants, which correlates with a higher likelihood of

detecting real-world defects. As Offutt et al. [24] suggest,

leveraging mutation scores provides a quantitative measure of

test effectiveness, thereby offering a robust metric for

assessing the quality of fuzzing efforts and the overall

reliability of the testing process [7].

20 INTERNETWORKING INDONESIA JOURNAL Sinaga Et Al.

III. THE EXPERIMENTS

A. Kawn Subscription Manager

Kawn Subscription Manager is a web-based system

designed to manage subscription packages for F&B (Food and

Beverage) businesses using the Kawn application. It can help

manage the subscription process of F&B merchants who

subscribe to the Kawn application. This system can also

facilitate the determination of the subscription period, the

number of subscribers, and the subscription renewal process.

The development of Kawn Subscription Manager is due to

the increasing number of F&B businesspeople who use the

Kawn application by subscription. Therefore, the company

needs help managing the subscription process, extending the

subscription period, activating, and deactivating subscriptions,

and monitoring subscription packages that F&B

businesspeople have purchased. In Kawn Subscriptions

Manager, there are three modules: Clients, Users, and

Subscriptions. The features that will be used in fuzzing testing

are as follows:

● Authentication

● Create outlets

● Create a subscription plan

● Create subscription

B. Test Case Analysis

In software testing, fuzzing does not use test scenarios.

Instead, it relies on random or arbitrary inputs to test the

application. The random or arbitrary inputs are called test

cases in fuzzing [13]. Test cases in fuzzing are different from

test cases in general software testing, which usually include

predefined inputs and expectations of desired results.

The test scenario for fuzzing with the ffuf buzzer is the

function of ffuf itself, namely:

● Finding pages and directory

● Virtual host discovery

● Fuzzing parameter

C. The Experiment

The stages that are conducted in this experiment are

depicted in Fig. 1.

Fig. 1. Research Design

The first step in testing Kawn Subscription Manager is

data collection. This process involves collecting information,

facts, or data relevant to and necessary for the research. The

second stage is applying fuzzing testing to the application. The

stages carried out in fuzzing testing include target

identification, generating fuzzed data, and test execution.

The third stage is done by applying mutation testing to

measure the ability and success of fuzzing in finding

vulnerabilities in the application. Stages in mutation testing

include generating mutants and mutation testing. The fourth

stage is result analysis. This stage is carried out by analyzing

the test results that have been obtained and writing them into a

test report containing the testing activities that have been

carried out, test results, and conclusions.

The details of the testing stages with fuzzing testing can be

seen in Fig. 2.

Fig. 2. Fuzzing Testing Stages

The first step in testing Kawn Subscription Manager is to

identify the target or test object, namely Kawn Subscription

Manager, by diagnosing what pages and fields will be tested.

By identifying the target, we will get information on critical

components and aspects of Kawn Subscription Manager, such

as pages, APIs, or functions that receive input from users.

The second stage is to generate fuzzed data. This stage is

done by compiling a wordlist composed of relevant words

according to the function being tested. This wordlist will be

used as a payload. The words contained in this wordlist are

called test cases in fuzzing. This stage helps in trying out

various possible inputs that may not be covered in regular test

cases.

The third stage is test execution. This stage is a stage

carried out by executing each word or test case that has been

generated previously with the fuzzing method. This test

execution process is done automatically with the ffuf web

fuzzer. The details of the testing stages with mutation testing

can be seen in Fig. 3.

Fig. 3. Mutation Testing Stages

The first stage is generating mutants. At this stage, a

mutant program is created. Mutant programs are generated by

modifying the feature program code that has been tested in the

previous stage. The program code modification will be done

manually.

The second stage is mutation testing. This stage involves

testing test cases against the mutant program that has been

created. The test cases used are the same ones used to test the

original program. At this stage, the mutation score calculation

process is carried out.

Implementation of testing with fuzzing and

experimentation with mutation testing on the Kawn

Subscriptions Manager is summarized in the following steps:

(i) Implementation of Testing with Fuzzing:

Vol.16/No.2 (2024) INTERNETWORKING INDONESIA JOURNAL 21

 ISSN: 1942-9703 / CC BY-NC-ND

a. Fuzzed data creation is done by compiling a wordlist

for relevant inputs in testing.

b. Fuzzed data is used to test finding pages and

directories, virtual host discovery, and fuzzing

parameters (GET and POST).

The testing is conducted by executing commands through the

command prompt.

(ii) Experimentation with Mutation Testing:

c. Creating mutant programs is done by modifying the

code of previously tested features.

d. Mutant programs are created for the functions of

finding pages and directories, fuzzing parameters (GET

and POST).

Mutation testing is carried out by running test cases on the

mutant programs and comparing the results with the original

program. The goal is to check whether the created test cases

can kill the mutant programs that have been made.

IV. EXPERIMENTAL RESULT

This research obtained the results of the fuzzing

implementation on two functions of the Kawn Subscriptions

Manager application and the adequacy calculation of the

resulting test inputs. The results obtained in the finding pages

and directories test can be seen in Table 1.

TABLE I

TEST RESULTS GET PARAMETER FUZZING

Payload Expected Output
(Status Code)

Actual Output
(Status Code)

Result

name 200 200 PASS

address 200 200 PASS

ads123 200 200 PASS
city_read 200 200 PASS

province_read 200 200 PASS

@sad#$ 200 200 PASS
subscriptionplan 200 200 PASS

expires 200 200 PASS

active 200 200 PASS
trial_unit 200 200 PASS

recurrence_unit 200 200 PASS

is_active 200 200 PASS

Based on the results of the GET parameter fuzzing test in

Table 1, it was found that all payloads were successfully

executed. From the results obtained, it can also be concluded

that there is no vulnerability in the GET parameter fuzzing

test. Even though all payloads get a status code 200, which

means OK where the server accepts and processes the payload

request sent, the GET parameter is not vulnerable because it is

tested on parameters for data filters.

TABLE II

MUTATION TESTING RESULT GETS PARAMETER FUZZING

Payload Original Mutant 1 Mutant 2 Mutant 3 Mutant 4

name PASS FAIL FAIL PASS PASS

address PASS FAIL PASS PASS PASS
ads123 PASS PASS PASS PASS PASS

city_read PASS PASS FAIL PASS PASS

province_re
ad

PASS PASS FAIL PASS PASS

@sad#$ PASS PASS PASS PASS PASS

subscriptio
nplan

PASS PASS PASS PASS FAIL

expires PASS PASS PASS PASS FAIL

active PASS PASS PASS PASS FAIL
trial_unit PASS PASS PASS FAIL PASS

recurrence_

unit

PASS PASS PASS FAIL PASS

is_active PASS PASS PASS PASS PASS

The execution of mutants with test inputs given PASS or the

results of the execution of mutant test inputs is different from

the original, meaning that the defect represented by this

mutant is detected in such a way that the mutant is killed.

Otherwise, the mutant survives [7]. So, based on Table 2

mutation testing results on GET parameter fuzzing, it can be

obtained that all four mutants that have been created can be

killed by at least one test input. This Parameter Fuzzing means

that all faults injected in the four mutant programs can be

detected as illustrated in Fig. 4.

Fig. 4. Mutation Testing Get Parameter Fuzzing

Based on the mutation testing results of GET parameter

fuzzing, we can then calculate the mutation score with mutk

about 4 and muts about 0 such as the score is about 100%.

Based on Table 3, the functions that have mutation scores

calculated are finding pages and directories and GET

parameter fuzzing. In addition, there are virtual host discovery

and POST data fuzzing functions. However, the reason the

virtual host discovery function is not shown is that the

function test did not get any results due to Kawn Subscription

Manager being run locally on localhost. POST data fuzzing is

not shown because fuzzing cannot penetrate Django's POST

security, which means Django's security is very good [25].

According to the Django Documentation (2023), Django has

built-in protection against most types of CSRF (Cross-Site

Request Forgery) attacks. CSRF protection works by checking

the credentials in each POST request. By way of explanation,

every POST request sent in Django will generate the csrf

token used. Through that csrf token, Django will check

whether the source that generated the csrf token is the same as

the source that made the POST request. If not, then Django

will block the request.

TABLE III

TESTING RESULT

Function Payload Mutant
Kill

Mutant

Survived

Mutant

Mutation

Score

nam
e

ad
dre

ss

ad
s1

23

cit
y_

re
ad

pro
vin

ce
_r

ead

@
sa

d#$

su
bsc

rip
tio

nplan

ex
pire

s

ac
tiv

e

tri
al_u

nit

Mutation Testing GET Parameter Fuzzing

Original Mutant1 Mutant2 Mutant3 Mutant4

pass

fail

22 INTERNETWORKING INDONESIA JOURNAL Sinaga Et Al.

Finding pages
and

directories

10 2 2 0 100%

GET
parameter

fuzzing

12 4 4 0 100%

Both functions in Table 3 have the same mutation score.

The result of the mutation score on both functions is 100%.

From the mutation score results of each function tested using

mutation testing. Based on the results of calculating the

average mutation score, the average mutation score on the

application of fuzzing in testing the Kawn Subscription

Manager Application measured using mutation testing is

100%.

V. CONCLUSION

The conclusions obtained from the research with the title

Applying Fuzzing in Software Testing: A Case Study on

Kawn Subscriptions Manager are fuzzing testing using the

FFUF web fuzzer was successfully applied to the Kawn

Subscriptions Manager test. Testing with fuzzing against the

original program in Kawn Subscriptions Manager shows that

all expected results match the actual results. Not all functions

of fuzzing, namely POST data fuzzing, can be implemented in

Django applications. Fuzzing is unable to attack Django's

POST method; Django has built-in protection against most

types of CSRF (Cross-Site Request Forgery) attacks.

Therefore, Django's POST security is perfect. The ability and

success of fuzzing in finding vulnerabilities in the Kawn

Subscriptions Manager were successfully evaluated using the

mutation analysis method. They obtained results showing that

the test inputs tested with the application of fuzzing have a

mutation score level of 100%, which means that the fuzzing

method using the web fuzzer ffuf, is capable and successful in

finding vulnerabilities in software applications with the

mutation testing method. However, this study should be

continued with further research. It is important to compare

fuzzing testing with other testing methods. This can help

identify the advantages and disadvantages of each method.

ACKNOWLEDGMENT

This research is fully supported by the Del Institute of

Technology, Indonesia in providing the necessary facilities.

REFERENCES

[1] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz

testing,” in Proceedings of the ACM Conference on Computer and

Communications Security, Association for Computing Machinery, Oct.
2018, pp. 2123–2138. doi: 10.1145/3243734.3243804.

[2] X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, “Fuzzing: A Survey for

Roadmap,” ACM Comput Surv, vol. 54, no. 11s, Sep. 2022, doi:
10.1145/3512345.

[3] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1,

no. 1, Dec. 2018, doi: 10.1186/s42400-018-0002-y.
[4] X. Zuo, X. Yang, Z. Dou, and J. R. Wen, “RUCIR at TREC 2019:

Conversational Assistance Track,” in 28th Text REtrieval Conference,

TREC 2019 - Proceedings, National Institute of Standards and
Technology (NIST), 2019. doi: 10.1145/1122445.1122456.

[5] “05 μ2- Using Mutation Analysis to Guide Mutation-Based Fuzzing”.

[6] Y. Jia and M. Harman, “An Analysis and Survey of the Development of
Mutation Testing,” IEEE Transactions on Software Engineering, vol.

37, no. 5, pp. 649–678, 2011. doi: 10.1109/TSE.2010.62.

[7] I. Synopsys, “What Is Fuzz Testing and How Does It Work,” Synopsys,
Inc.

[8] Feradhita, “Security Testing,”

https://www.logique.co.id/blog/2021/03/02/security-testing/.
[9] T. Hamilton, “What is Software Testing,” 2022.

[10] S. Dass and A. S. Namin, “Vulnerability coverage for adequacy security

testing,” in Proceedings of the ACM Symposium on Applied Computing,
Association for Computing Machinery, Mar. 2020, pp. 540–543. doi:

10.1145/3341105.3374099.

[11] D. Gollmann, Computer Security. Wiley, 2011.
[12] J. Viega and G. McGraw, Building Secure Software: How to Avoid

Security Problems the Right Way. Addison-Wesley Professional.

Addison-Wesley Professional, 2001.
[13] M. Mattsson, “A comparison of FFUF and Wfuzz for fuzz testing web

applications.”

[14] G. Mcgraw, “Building Security In,” 2004. [Online]. Available:
www.computer.org/security/

[15] F. Duchene, “Detection of Web Vulnerabilities via Model Inference

assisted Evolutionary Fuzzing,” 2014. [Online]. Available:
https://hal.archives-ouvertes.fr/tel-01102325

[16] OWASP Foundation, “OWASP Testing Guide,”

https://owasp.org/www-project-web-security-testing-guide/latest/.
[17] OWASP, “OWASP Top Ten,” https://owasp.org/www-project-top-ten/.

[18] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and M.

Vechev, “Securify: Practical Security Analysis of Smart Contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, in CCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 67–82. doi:

10.1145/3243734.3243780.

[19] Django, “Django Documentation,”
https://buildmedia.readthedocs.org/media/pdf/django/4.2.x/django.pdf.

[20] M. R. Sampurna, “NetPLG Journal of Network and Computer

Applications Implementasi Hydra, FFUF, dan WFUZZ dalam Brute
Force DVWA,” vol. 1, no. 2, 2022. [Online]. Available:

https://jurnal.netplg.com/

[21] G. Mcgraw, “Software Security.” [Online]. Available: www.cigital.com
[22] H. Du, V. K. Palepu, and J. A. Jones, “To Kill a Mutant: An Empirical

Study of Mutation Testing Kills,” in ISSTA 2023 - Proceedings of the

32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis, Association for Computing Machinery, Inc, Jul. 2023, pp.

715–726. doi: 10.1145/3597926.3598090.

[23] R. Gopinath, P. Görz, and A. Groce, “Mutation Analysis: Answering the
Fuzzing Challenge,” Jan. 2022, [Online]. Available:

http://arxiv.org/abs/2201.11303

[24] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge
University Press, 2016. doi: 10.1017/9781316771273.

[25] A. Derezińska and K. Hałas, “Analysis of mutation operators for the

Python language,” in Advances in Intelligent Systems and Computing,
Springer Verlag, pp. 155–164, 2014. doi: 10.1007/978-3-319-07013-

1_15.

