Vol.16/No.2 (2024)

INTERNETWORKING INDONESIA JOURNAL 17

Applying Fuzzing in Software Testing: A Case
Study on Kawn Subscriptions Manager

Arnaldo Marulitua Sinaga, Ivanowsky Fernandes Habeahan, Riyanthi Angrainy Sianturi, Willy Susilo,
and Yohanssen Pratama

Abstract— Fuzzing is an automated black box testing method
that evaluates abnormal inputs to trace targeted vulnerabilities.
In this research, fuzzing is implemented on the Kawn
Subscriptions Manager application. Further, we use the mutation
testing method to assess the ability and the success of fuzzing in
finding vulnerabilities in the application. The web fuzzer used in
fuzzing is FFUF, and the input or payload tested is generated
based on the word list required to test each function. A total of 4
mutants were generated and by performing mutation testing,
those 4 mutants were successfully killed. Therefore, a 100%
mutation score is obtained. It means that the fuzzing method
using the FFUF web fuzzer successfully found vulnerabilities in
software applications. In addition, it was found that the Django
application has implemented strict security against the POST
request method. Based on the research findings, we suggest
fuzzing all functions in future research. In addition, it is
necessary to compare fuzzing with other similar methods to
identify the capability and reliability of fuzzing. In addition, our
research highlights the importance of integrating comprehensive
security measures and testing frameworks in the web application
development lifecycle. By using FFUF, we demonstrate an
efficient approach to identify and mitigate potential security
threats, ensuring robust protection against cyberattacks.

Index Terms— Fuzzing, FFUF, Mutation testing, Payload,
Software security.

. INTRODUCTION

UZZ testing is a promising technique that has been used to

uncover many bugs and vulnerabilities [1]. This technique
involves creating many test cases to repeatedly evaluate target
programs while observing any exceptions that occur. These
exceptions serve as signals of potential security issues.
Typically, fuzz testing uses a queue of seeds, which are
particularly interesting inputs, and new inputs are
continuously generated by mutating these seeds in an endless
loop [2]. Compared to other methods, fuzzing requires little

A. Sinaga is a with the Faculty of Vocational Studies at Institut Teknologi
Del (IT Del), Indonesia (e-mail: aldo@del.ac.id*).

I. Habeahan is with the Faculty of Vocational Studies at Institut Teknologi
Del (IT Del), Indonesia (e-mail: ivanowskyfernandez@gmail.com).

R. A. Sianturi is with the Faculty of Vocational Studies at Institut
Teknologi Del (IT Del), Indonesia (e-mail: riyanthi@del.ac.id).

W. Susilo is with the Faculty of Engineering and Information Sciences at
the University of Wollongong, Australia (e-mail: willy_susilo@uow.edu.au).

Y. Pratama is with the Graduate School of Science and Technology at Nara
Institute of Science and Technology, Japan (e-mail:
yohanssen.pratama.yl0O@is.naist.jp).

knowledge of the target. It can be easily implemented in large
applications and thus has become the most popular
vulnerability discovery solution, especially in the industry [3].

In this research, the web application that will use the
fuzzing method is Kawn Subscriptions Manager. This web-
based application is designed to manage subscription packages
for F&B (Food and Beverage) businesses on the Kawn
application. Software testing with fuzzing methods is done in
real execution; therefore, fuzzing obtains a high level of
accuracy. One tool that can be used in this fuzz method is the
FFUF tool. FFUF, or "Fuzz Faster You Fool", is a fast web
fuzzer written in Go that allows typical directory discovery,
virtual host discovery (without DNS records), and GET and
POST parameter fuzzing.

In Kawn Subscriptions Manager, there is also data on
clients, namely F&B businesspeople, essential to keeping safe.
For this reason, it is vital to apply fuzzing to the Kawn
Subscriptions Manager. However, fuzzing may not be
effective in testing different web applications because fuzzing
requires sufficient resources, such as time and computing
power, to generate extensive and diverse inputs [3]. Therefore,
a fault-based testing method with a mutation analysis
approach is used to measure the effectiveness of fuzzing
testing in identifying vulnerabilities in web applications or
software [4].

Mutation-based fuzzing is a quality assurance tool that is
becoming increasingly popular for its ability to uncover
critical bugs and security vulnerabilities in widely used
software systems [5]. Mutation testing plays a crucial role in
this context by replacing or modifying existing parts of the
source code, resulting in code variants known as 'mutants'.
This approach is not just about identifying bug disclosure
results generated by fuzzer, but also about providing mutation
scores as additional feedback to evaluate the fuzzing results
contained in the Kawn Subscriptions Manager. Its inclusion in
the testing process ensures a comprehensive examination of
the software's vulnerabilities, instilling confidence in the
security professionals and researchers. According to Jia and
Harman [6], mutation testing enhances the fault detection
capability of testing strategies, making it an invaluable tool in
software security assessments [7]. By employing mutation
testing, we ensure that the vulnerabilities are not only detected
but also that the detection mechanisms are rigorously
validated, thereby reinforcing the overall security posture of
the application [8].

ISSN: 1942-9703 / CC BY-NC-ND @

18 INTERNETWORKING INDONESIA JOURNAL

This paper consists of five sections: section 2 explains the
studied methods, namely Fuzzing and Mutation Testing.
Section 3 explains the studied object and conducted
experiment. Section 4 explains the results obtained from the
experiment. Section 5 describes the conclusions and potential
further research.

Il. PROCEDURE FOR PAPER SUBMISSION

A. Software Security Testing

Software systems and applications are frequently released
with numerous features and settings [9]. These elements cater
to users and the underlying platforms for various purposes,
including architectural configurations, virtualization,
performance optimization, security and access control,
privacy, and system-level interactions [10]. Software testing is
a solution to verify whether the built application is by the
expected requirements [11]. Testing is more than just
debugging. Testing is not only used to find defects and fix
them. It is also used in validation, verification processes, and
reliability measurements. Therefore, software testing is
essential to ensure no errors in the application [12].

Software testing aims to identify the mistakes and features
or functions that do not match the expected requirements so
that they can be corrected immediately. Properly tested
software products can ensure quality, security, and reliability.
Testing is a viable approach to detecting implementation bugs
that have a security impact, aka vulnerability [13]. A software
vulnerability is a security flaw, glitch, or weakness in software
code that an attacker could exploit to harm the stakeholders of
a software system [14]. Therefore, it can be beneficial in terms
of cost efficiency, time savings, and, most importantly,
customer satisfaction.

Software security is the idea of designing software to
continue functioning correctly in the face of malicious attacks
[7]. Web application security is a significant part of any web-
based online business. The widely accessible nature of the
Internet exposes web assets to possible attacks from multiple
locations with varying degrees of scope and sophistication.
Web application security is about the security of web
applications, websites, and web services such as APIs. It also
aims to address vulnerabilities [15].

Ensuring robust web application security involves
implementing various practices and technologies designed to
detect, prevent, and mitigate potential threats. This includes
the use of secure coding practices, regular security testing, and
the adoption of frameworks and tools that provide built-in
security features [14]. Additionally, it is essential to stay
updated on the latest security threats and trends, such as SQL
injection, cross-site scripting (XSS), and distributed denial-of-
service (DDoS) attacks, which can exploit vulnerabilities in
web applications. By regularly conducting vulnerability
assessments and penetration testing, organizations can identify
and rectify weaknesses before they are exploited by malicious
actors. Furthermore, integrating security into the software
development lifecycle (SDLC) ensures that security
considerations are addressed at every stage of development,

Sinaga Et Al.

thereby enhancing the overall resilience of web applications
against cyber threats [16].

Security testing is a process carried out to find security
vulnerabilities in software or applications [13]. It will have
various tests to ensure that the developed system is fully
protected against multiple threats of cyberattacks. The purpose
of this testing is to find loopholes and weaknesses in the
system that can lead to loss of data or company reputation.
One type of software security testing is vulnerability scanning.
Vulnerability Scanning (Vuln Scan) is an automated data
security test. Software scans for system vulnerabilities such as
cross-site scripting, SQL injection, command injection, path
traversal, and insecure server configuration. This tool is often
referred to as part of Dynamic Application Security Testing
(DAST). DAST tools dynamically analyze a running
application's responses to various inputs, simulating potential
attack scenarios in real-time [16]. According to OWASP [17],
DAST is crucial for detecting vulnerabilities that occur only
during runtime, making it an essential component of a
comprehensive security testing strategy. By combining DAST
with other testing methods such as fuzzing and static analysis,
organizations can achieve a multi-layered defense mechanism,
thereby significantly enhancing the security posture of their
applications [18].

Vulnerability itself is a deficiency or defect in a computer
system that can be found in software, hardware, protocols, and
even in security policies. Vulnerability is an application error
that will eventually cause failure to violate security properties
that should constantly be monitored [13]. Vulnerability is what
can allow attacks that disrupt the system in terms of
confidentiality, integrity, and availability. The vulnerability
causes severe damage to information systems and software.
Therefore, many efforts have been mobilized to overcome
these vulnerabilities. One of the right solutions to overcome
this problem is the fuzzing method. Fuzzing, by systematically
injecting malformed inputs and monitoring for unexpected
behaviors, offers a proactive approach to uncovering hidden
flaws. As noted by Tsankov et al. [18], the effectiveness of
fuzzing in revealing critical vulnerabilities has made it a
cornerstone in contemporary cybersecurity strategies. By
identifying and addressing these vulnerabilities early,
organizations can significantly reduce the risk of exploitation
and enhance the robustness of their systems [19].

B. Fuzzing

It is also essential to understand that internet security testing
is not only about testing security functions such as
authentication and authorization that can be implemented in
applications. It is equally important to test the secure
implementation of other functions (e.g., using business logic,
correct input validation, and output coding) [7]. Properly
tested software products can ensure quality, safety, and
reliability [13]. Fuzzing or fuzz testing is one of the black box
testing methods performed in automation, which evaluates
abnormal inputs to trigger targeted vulnerabilities [20]. Barton
Miller coined the term fuzzing, referred to as "the act of
software torture". Fuzz testing is a promising technique that

Vol.16/No.2 (2024)

has been used to uncover many bugs and vulnerabilities [1].
Compared to other methods, fuzzing requires little knowledge
of the target. It can be easily implemented in large applications
and thus has become the most popular vulnerability discovery
solution, especially in the industry. This method is used by
major industries such as Google, Microsoft, Amazon, Meta,
and others [7].

In software testing, fuzzing stands out for its unique
approach. Unlike other methods that use predefined test
scenarios, fuzzing relies on random or arbitrary inputs to test
the application. This approach is driven by the main purpose
of fuzzing, which is to find vulnerabilities or bugs in the
application by testing how it handles invalid or unexpected
inputs. This distinct approach sets fuzzing apart from other
testing methods.

Fuzzing, by its nature, does not have a definite 'expected
result' like other testing methods. Its focus is on studying the
system by providing unexpected inputs to see how the
application or system responds. The goal of fuzzing is to
uncover unexpected or unwanted conditions that can lead to
bugs or threaten the system's security. This goal underscores
the unique value of fuzzing in software testing.

One of the buzzers that can be used in fuzzing is FFUF.
FFUF, or "Fuzz Faster You Fool", is a fast web fuzzer written
in Go that allows typical directory discovery, virtual host
discovery (without DNS records), and GET and POST
parameter fuzzing. FFUF is inspired by Wfuzz, an older but
very similar web fuzzer [13]. The main advantage of FFUF is
in terms of performance over other web fuzzers such as
WFUZZ. The way FFUF works is by compiling a list of words
that will be used as input for the "fuzzed requests" that are
executed.

Despite the advantages, fuzzing alone cannot address all
potential vulnerabilities. A combined approach utilizing static
and dynamic analysis methods can offer a more
comprehensive security assessment. As mentioned by
McGraw [14], integrating static code analysis with fuzzing can
uncover vulnerabilities that might be missed when these
techniques are used in isolation. Static analysis examines the
code structure and logic without executing the program,
identifying potential security flaws early in the development
cycle. This preemptive strategy, coupled with the reactive
nature of fuzzing, creates a robust defense mechanism against
a wide range of security threats. Additionally, continuous
monitoring and updating of security policies, as emphasized
by Viega and McGraw, are crucial to adapting to the evolving
threat landscape and ensuring sustained protection against new
vulnerabilities [21].

C. Mutation Testing

Mutation testing was initially proposed by DeMillo as a
method to evaluate the effectiveness of a test suite and to
identify areas needing further testing [22]. This process
involves repeatedly introducing artificial bugs (mutations) into
the software to see if any test cases fail as a result. If at least
one test case detects the mutation and fails, the mutant is
considered "killed," indicating the test suite's effectiveness for

INTERNETWORKING INDONESIA JOURNAL 19

that mutant. Conversely, if no test cases fail, the mutant
"survives," which can highlight a weakness in the test suite,
unless the mutant is equivalent and cannot be detected.
Mutation testing is a testing technique that modifies the
program by inserting faults into it to create new versions
called mutants [23]. The original program modification
process is done by changing the syntax in the program with
the mutation operator. Mutation testing is conducted to
measure the adequacy of the generated test suite. Ultimately, a
mutation score is calculated as the percentage of killed
mutants out of all non-equivalent mutants tested. A higher
mutation score indicates a more effective test suite, while a
lower score suggests less effectiveness.

In generating mutants, the program code can be modified by
inserting faults into the program. Program modification is
done using mutation operators by changing the syntax in the
program. Some mutation operators that can be implemented in
Python programs include [7]:

e AOD - Arithmetic Operator Deletion
e AOR - Arithmetic Operator Replacement
e ASR - Assignment Operator Replacement
e COD - Conditional Operator Deletion
COI - Conditional Operator Insertion
CRP - Constant Replacement
ROR - Relational Operator Replacement
10D - Overriding Method Deletion
IOP - Overridden Method Calling Position Change
SCD - Super Calling Deletion
SCI - Super Calling Insertion
e DDL - Decorator Deletion
e SDL - Statement Deletion
The measurement used for mutation testing is named
mutation score. The mutation score is calculated by using the
following formula [1].

mutk

score = x 100% (D)

muts+mutk
The mutation score is the ratio of killed mutants (mutk)
divided by all mutants (the sum of killed and survived
mutants). Suppose the execution of mutants with test inputs
given PASS or the execution results of mutant test inputs are
different from the original. In that case, it means that the
defect represented by this mutant is detected in such a way
that the mutant is killed. Otherwise, the mutant survives,
which means that the given input is not able to detect such a
defect [7].

Generally, mutation scores can be used to reflect the ability
of a given input to detect bugs. Higher mutation scores
indicate that the test inputs are effective in identifying and
killing mutants, which correlates with a higher likelihood of
detecting real-world defects. As Offutt et al. [24] suggest,
leveraging mutation scores provides a quantitative measure of
test effectiveness, thereby offering a robust metric for
assessing the quality of fuzzing efforts and the overall
reliability of the testing process [7].

ISSN: 1942-9703 / CC BY-NC-ND @

20 INTERNETWORKING INDONESIA JOURNAL

I1l. THE EXPERIMENTS

A. Kawn Subscription Manager

Kawn Subscription Manager is a web-based system
designed to manage subscription packages for F&B (Food and
Beverage) businesses using the Kawn application. It can help
manage the subscription process of F&B merchants who
subscribe to the Kawn application. This system can also
facilitate the determination of the subscription period, the
number of subscribers, and the subscription renewal process.

The development of Kawn Subscription Manager is due to
the increasing number of F&B businesspeople who use the
Kawn application by subscription. Therefore, the company
needs help managing the subscription process, extending the
subscription period, activating, and deactivating subscriptions,

and monitoring subscription packages that F&B
businesspeople have purchased. In Kawn Subscriptions
Manager, there are three modules: Clients, Users, and

Subscriptions. The features that will be used in fuzzing testing
are as follows:

e Authentication

e Create outlets

e Create a subscription plan

e Create subscription

B. Test Case Analysis

In software testing, fuzzing does not use test scenarios.
Instead, it relies on random or arbitrary inputs to test the
application. The random or arbitrary inputs are called test
cases in fuzzing [13]. Test cases in fuzzing are different from
test cases in general software testing, which usually include
predefined inputs and expectations of desired results.

The test scenario for fuzzing with the ffuf buzzer is the
function of ffuf itself, namely:

e Finding pages and directory

e Virtual host discovery

e Fuzzing parameter

C. The Experiment

The stages that are conducted in this experiment are
depicted in Fig. 1.

Fig. 1. Research Design

Implementation of
Fuzzing Testing

Data Collection

y

Implementation of
Mutation Testing

Result Analysis [

The first step in testing Kawn Subscription Manager is
data collection. This process involves collecting information,
facts, or data relevant to and necessary for the research. The
second stage is applying fuzzing testing to the application. The

Sinaga Et Al.

stages carried out in fuzzing testing include
identification, generating fuzzed data, and test execution.

target

The third stage is done by applying mutation testing to
measure the ability and success of fuzzing in finding
vulnerabilities in the application. Stages in mutation testing
include generating mutants and mutation testing. The fourth
stage is result analysis. This stage is carried out by analyzing
the test results that have been obtained and writing them into a
test report containing the testing activities that have been
carried out, test results, and conclusions.

The details of the testing stages with fuzzing testing can be
seen in Fig. 2.

Generate Fuzzed
Data

Test Execution

Target |dentification

Fig. 2. Fuzzing Testing Stages

The first step in testing Kawn Subscription Manager is to
identify the target or test object, namely Kawn Subscription
Manager, by diagnosing what pages and fields will be tested.
By identifying the target, we will get information on critical
components and aspects of Kawn Subscription Manager, such
as pages, APIs, or functions that receive input from users.

The second stage is to generate fuzzed data. This stage is
done by compiling a wordlist composed of relevant words
according to the function being tested. This wordlist will be
used as a payload. The words contained in this wordlist are
called test cases in fuzzing. This stage helps in trying out
various possible inputs that may not be covered in regular test
cases.

The third stage is test execution. This stage is a stage
carried out by executing each word or test case that has been
generated previously with the fuzzing method. This test
execution process is done automatically with the ffuf web
fuzzer. The details of the testing stages with mutation testing
can be seen in Fig. 3.

Generate Mutant Mutation Testing

Fig. 3. Mutation Testing Stages

The first stage is generating mutants. At this stage, a
mutant program is created. Mutant programs are generated by
modifying the feature program code that has been tested in the
previous stage. The program code modification will be done
manually.

The second stage is mutation testing. This stage involves
testing test cases against the mutant program that has been
created. The test cases used are the same ones used to test the
original program. At this stage, the mutation score calculation
process is carried out.

Implementation of testing with fuzzing and
experimentation with mutation testing on the Kawn
Subscriptions Manager is summarized in the following steps:
(i) Implementation of Testing with Fuzzing:

Vol.16/No.2 (2024)

a. Fuzzed data creation is done by compiling a wordlist
for relevant inputs in testing.

b. Fuzzed data is used to test finding pages and
directories, virtual host discovery,
parameters (GET and POST).

The testing is conducted by executing commands through the
command prompt.

and fuzzing

(i) Experimentation with Mutation Testing:

c. Creating mutant programs is done by modifying the
code of previously tested features.

d. Mutant programs are created for the functions of
finding pages and directories, fuzzing parameters (GET
and POST).

Mutation testing is carried out by running test cases on the
mutant programs and comparing the results with the original
program. The goal is to check whether the created test cases
can kill the mutant programs that have been made.

IV. EXPERIMENTAL RESULT

This research obtained the results of the fuzzing
implementation on two functions of the Kawn Subscriptions
Manager application and the adequacy calculation of the
resulting test inputs. The results obtained in the finding pages
and directories test can be seen in Table 1.

TABLE |
TEST RESULTS GET PARAMETER FUZZING

INTERNETWORKING INDONESIA JOURNAL 21
subscriptio PASS PASS PASS PASS FAIL
nplan
expires PASS PASS PASS PASS FAIL
active PASS PASS PASS PASS FAIL
trial_unit PASS PASS PASS FAIL PASS
recurrence_ PASS PASS PASS FAIL PASS
unit
is_active PASS PASS PASS PASS PASS

Payload Expected Output Actual Output Result
(Status Code) (Status Code)
name 200 200 PASS
address 200 200 PASS
ads123 200 200 PASS
city read 200 200 PASS
province_read 200 200 PASS
@sad#$ 200 200 PASS
subscriptionplan 200 200 PASS
expires 200 200 PASS
active 200 200 PASS
trial_unit 200 200 PASS
recurrence_unit 200 200 PASS
is_active 200 200 PASS

Based on the results of the GET parameter fuzzing test in
Table 1, it was found that all payloads were successfully
executed. From the results obtained, it can also be concluded
that there is no vulnerability in the GET parameter fuzzing
test. Even though all payloads get a status code 200, which
means OK where the server accepts and processes the payload
request sent, the GET parameter is not vulnerable because it is
tested on parameters for data filters.

TABLE 1l
MUTATION TESTING RESULT GETS PARAMETER FUZZING

Payload Original Mutant1 Mutant2 Mutant3 Mutant 4
name PASS FAIL FAIL PASS PASS
address PASS FAIL PASS PASS PASS
ads123 PASS PASS PASS PASS PASS
city_read PASS PASS FAIL PASS PASS
province_re PASS PASS FAIL PASS PASS

ad

@sad#$ PASS PASS PASS PASS PASS

The execution of mutants with test inputs given PASS or the
results of the execution of mutant test inputs is different from
the original, meaning that the defect represented by this
mutant is detected in such a way that the mutant is Killed.
Otherwise, the mutant survives [7]. So, based on Table 2
mutation testing results on GET parameter fuzzing, it can be
obtained that all four mutants that have been created can be
killed by at least one test input. This Parameter Fuzzing means
that all faults injected in the four mutant programs can be
detected as illustrated in Fig. 4.

Mutation Testing GET Parameter Fuzzing

pass
fd” ‘ ‘ ‘ ‘ ‘ ‘ ‘
¥ > > N >
Qv 5 > N & .
¥ < N z*Q\

2 o 2] 2 &
£ & & IS N N
N & N P s Y N7
& S O e & &
N 6\Q
& &
&
m Original Mutantl Mutant2 Mutant3 Mutant4

Fig. 4. Mutation Testing Get Parameter Fuzzing

Based on the mutation testing results of GET parameter
fuzzing, we can then calculate the mutation score with mutk
about 4 and muts about 0 such as the score is about 100%.

Based on Table 3, the functions that have mutation scores
calculated are finding pages and directories and GET
parameter fuzzing. In addition, there are virtual host discovery
and POST data fuzzing functions. However, the reason the
virtual host discovery function is not shown is that the
function test did not get any results due to Kawn Subscription
Manager being run locally on localhost. POST data fuzzing is
not shown because fuzzing cannot penetrate Django's POST
security, which means Django's security is very good [25].
According to the Django Documentation (2023), Django has
built-in protection against most types of CSRF (Cross-Site
Request Forgery) attacks. CSRF protection works by checking
the credentials in each POST request. By way of explanation,
every POST request sent in Django will generate the csrf
token used. Through that csrf token, Django will check
whether the source that generated the csrf token is the same as
the source that made the POST request. If not, then Django
will block the request.

TABLE 1l
TESTING RESULT

Kill Survived
Mutant Mutant

Mutation

Mutant
Score

Function Payload

ISSN: 1942-9703 / CC BY-NC-ND @

22 INTERNETWORKING INDONESIA JOURNAL

Finding pages

and 10 2 2 0 100%
directories

GET

parameter 12 4 4 0 100%
fuzzing

Both functions in Table 3 have the same mutation score.
The result of the mutation score on both functions is 100%.
From the mutation score results of each function tested using
mutation testing. Based on the results of calculating the
average mutation score, the average mutation score on the
application of fuzzing in testing the Kawn Subscription
Manager Application measured using mutation testing is
100%.

V. CONCLUSION

The conclusions obtained from the research with the title
Applying Fuzzing in Software Testing: A Case Study on
Kawn Subscriptions Manager are fuzzing testing using the
FFUF web fuzzer was successfully applied to the Kawn
Subscriptions Manager test. Testing with fuzzing against the
original program in Kawn Subscriptions Manager shows that
all expected results match the actual results. Not all functions
of fuzzing, namely POST data fuzzing, can be implemented in
Django applications. Fuzzing is unable to attack Django's
POST method; Django has built-in protection against most
types of CSRF (Cross-Site Request Forgery) attacks.
Therefore, Django's POST security is perfect. The ability and
success of fuzzing in finding vulnerabilities in the Kawn
Subscriptions Manager were successfully evaluated using the
mutation analysis method. They obtained results showing that
the test inputs tested with the application of fuzzing have a
mutation score level of 100%, which means that the fuzzing
method using the web fuzzer ffuf, is capable and successful in
finding vulnerabilities in software applications with the
mutation testing method. However, this study should be
continued with further research. It is important to compare
fuzzing testing with other testing methods. This can help
identify the advantages and disadvantages of each method.

ACKNOWLEDGMENT

This research is fully supported by the Del Institute of
Technology, Indonesia in providing the necessary facilities.

REFERENCES

[1] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz
testing,” in Proceedings of the ACM Conference on Computer and
Communications Security, Association for Computing Machinery, Oct.
2018, pp. 2123-2138. doi: 10.1145/3243734.3243804.

[2] X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, “Fuzzing: A Survey for
Roadmap,” ACM Comput Surv, vol. 54, no. 11s, Sep. 2022, doi:
10.1145/3512345.

[3] J.Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1
no. 1, Dec. 2018, doi: 10.1186/s42400-018-0002-y.

[4] X. Zuo, X. Yang, Z. Dou, and J. R. Wen, “RUCIR at TREC 2019:
Conversational Assistance Track,” in 28th Text REtrieval Conference,
TREC 2019 - Proceedings, National Institute of Standards and
Technology (NIST), 2019. doi: 10.1145/1122445.1122456.

[5] “05 p2- Using Mutation Analysis to Guide Mutation-Based Fuzzing”.

[6] Y.Jia and M. Harman, “An Analysis and Survey of the Development of
Mutation Testing,” IEEE Transactions on Software Engineering, vol.
37, no. 5, pp. 649-678, 2011. doi: 10.1109/TSE.2010.62.

[71
(8]

[9]
[10]

[11]
[12]
[13]
[14]

[15]
[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Sinaga Et Al.

I. Synopsys,
Inc.
Feradhita, “Security
https://www.logique.co.id/blog/2021/03/02/security-testing/.
T. Hamilton, “What is Software Testing,” 2022.

S. Dass and A. S. Namin, “Vulnerability coverage for adequacy security
testing,” in Proceedings of the ACM Symposium on Applied Computing,
Association for Computing Machinery, Mar. 2020, pp. 540-543. doi:
10.1145/3341105.3374099.

D. Gollmann, Computer Security. Wiley, 2011.

J. Viega and G. McGraw, Building Secure Software: How to Avoid
Security Problems the Right Way. Addison-Wesley Professional.
Addison-Wesley Professional, 2001.

M. Mattsson, “A comparison of FFUF and Wfuzz for fuzz testing web
applications.”

G. Mcgraw, “Building Security In,” 2004.
www.computer.org/security/

“What Is Fuzz Testing and How Does It Work,” Synopsys,

Testing,”

[Online]. Available:

F. Duchene, “Detection of Web Vulnerabilities via Model Inference
assisted Evolutionary = Fuzzing,” 2014. [Online]. Available:
https://hal.archives-ouvertes.fr/tel-01102325

OWASP Foundation, “OWASP Testing Guide,”

https://owasp.org/www-project-web-security-testing-guide/latest/.
OWASP, “OWASP Top Ten,” https://owasp.org/www-project-top-ten/.
P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Biinzli, and M.
Vechev, “Securify: Practical Security Analysis of Smart Contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, in CCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 67-82. doi:
10.1145/3243734.3243780.

Django, “Django Documentation,”
https://buildmedia.readthedocs.org/media/pdf/django/4.2.x/django.pdf.
M. R. Sampurna, “NetPLG Journal of Network and Computer
Applications Implementasi Hydra, FFUF, dan WFUZZ dalam Brute
Force DVWA,” wvol. 1, no. 2, 2022. [Online]. Available:
https://jurnal.netplg.com/

G. Mcgraw, “Software Security.” [Online]. Available: www.cigital.com
H. Du, V. K. Palepu, and J. A. Jones, “To Kill a Mutant: An Empirical
Study of Mutation Testing Kills,” in ISSTA 2023 - Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis, Association for Computing Machinery, Inc, Jul. 2023, pp.
715-726. doi: 10.1145/3597926.3598090.

R. Gopinath, P. Gorz, and A. Groce, “Mutation Analysis: Answering the
Fuzzing Challenge,” Jan. 2022, [Online]. Auvailable:
http://arxiv.org/abs/2201.11303

P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge
University Press, 2016. doi: 10.1017/9781316771273.

A. Derezifiska and K. Halas, “Analysis of mutation operators for the
Python language,” in Advances in Intelligent Systems and Computing,
Springer Verlag, pp. 155-164, 2014. doi: 10.1007/978-3-319-07013-
1 15.

