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Real-Time Chil1 Harvest Estimation with Object
Detection Technology in Enhancing Agricultural
Efficiency

Arjon Turnip, Lidia Marselina, Endra Joelianto, Poltak Sihombing, and Putra Sumari

Abstract— Agriculture plays a critical role in ensuring food
security, yet technological advancements in this sector remain
limited compared to its potential. Modern innovations, such as
Object Detection, offer promising solutions to enhance
agricultural efficiency and productivity. This study explores the
application of the YOLOV8 algorithm, the latest evolution of the
YOLO object detection framework, to detect chili fruits rapidly
and accurately. By employing this method, farmers can estimate
potential chili harvests, streamlining vyield prediction and
improving decision-making processes in real time. Experimental
results demonstrate that the model achieved a mean Average
Precision (MAP) of 75.4%, an F1 score of 77.21%, a Precision of
74.7%, a Recall of 79.9%, and a processing speed of 6.9
milliseconds per image. These results highlight the model's
effectiveness in practical applications but also indicate room for
improvement, as performance is influenced by the limited number
of training iterations. Future work could focus on increasing
training iterations and expanding the dataset to enhance detection
accuracy and robustness, ultimately supporting precision
agriculture advancements.

Index Terms—Object detection, YOLO algorithm, Real-time,
Precision agriculture, Chili Pepper.

I. INTRODUCTION

THE ever-evolving modern society has led to the growth of
global consumption levels [1]. According to the Central
Bureau of Statistics, Indonesia's market expenditure share in
2022 amounted to 50.14 percent with an increase of 0.89
percent from the previous year. The share of food expenditure
itself is inversely proportional to food security. The higher the
food expenditure figure, the worse the food security value [2].
Indonesia itself has committed to maintaining national food
security by increasing production in agriculture, with a
contribution of 12.98% to the national economy [3].
Agriculture also has the highest percentage for the main
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employment structure in Indonesia in 2022 at 28.61% [4].
However, in Indonesia agriculture is still done conventionally
which is not effective and efficient. Not much technology has
been applied to this field.

There are several main problems that become obstacles and
need to be solved, namely the accuracy of detection needs to be
continuously improved, the speed of inference in the model
used, and the use of appropriate and lightweight models for data
processing [5]. Inefficient agricultural methods can cause
agricultural pollution, and in the event of crop disorders, such
as diseases and defects, manual diagnosis will be very slow,
laborious, and require large capital [5-6].

The development of technology plays a major role in
agriculture [1-3][5][6-10] which allows farmers to get
information quickly, accurately, and take immediate action if
there are obstacles, and can improve the quality of crops
[5][11]. One technology that is very useful in agriculture is
Image Processing technology, used as an object detector
(Object Detection) [12]. Object Detection technology has been
widely developed and applied in various fields, such as disease
detection in the health sector, facial recognition in the security
sector, automatic drivers, smart robots, and so on. In
agriculture, using Object Detection technology to monitor the
state of plants is much more efficient than manual detection [13-
14]. This is because Object Detection technology is able to
monitor the plants at all times while the system is active, so that
if something happens that is not as it should be, it can be
detected immediately. This process is very beneficial for plant
growth.

Basically, Object Detection algorithms have been developed
for plant detection by extracting target features into complex
scenes. Several techniques, including LiDAR, sonar, RGB-
Depth Map (RGB-D) Imaging Vision, Region-based
Convolutional Neural Networks (R-CNN), and Feedforward
Neural Networks (FNN), utilize convolution operations and
feature intricate architectures. Numerous CNN-based
algorithms, such as YOLO and Faster R-CNN, have been
extensively employed for fruit object detection [5][11].

One method that is now being developed for Object
Detection is You Only Look Once (YOLO). YOLO has far
superior detection accuracy and speed compared to other
methods [1][5][12-13]. This method falls into the category of
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one-stage algorithms, which obtain location and category
information of objects directly [15-16]. The latest research of
YOLO is YOLOv7 which is designed using bag-of-freebies for
real time detection with high accuracy and low inference cost
[11017].

Several object detection methods have been developed, such
as the one developed by H. S. Gill et al. [18] that improved fruit
recognition from images using deep learning. The research
combines CNN, RNN, and LSTM methods for fruit
classification based on optimal features and selected
derivatives, with the resulting accuracy being very effective.
However, because it combines 3 methods at once, the
computational process takes a long time and is a relatively
heavy process [18].

Object Detection methods using two-stage algorithms such
as R-CNN, LetNet, ResNet, SPP-Net, and the like have also
been widely researched. As conducted by S. Wan and S.
Goudos [14] in their research discussing the Faster R-CNN
method for detecting multi-class fruits using 4000 images
resulting in an increase in convolutional and pooling layers
achieved has a high and fast accuracy of 91% mAP. W. Zhang
et al. [19] have also conducted research using the ResNet-50
method to evaluate wheat quality. The research resulted in an
average accuracy of 97.5%. One of the causes of the lack of
accuracy is due to the image quality that is often lacking. The
integration of LeNet-5, ResNet-34, and VGG-16 models with
an image enhancement approach to refine particle features in
images has been explored, resulting in a 1% accuracy
improvement over models without enhancement [20].

Recent research has favored one-stage methods such as SSD,
YOLO, and RPN [15] over two-stage methods. Some studies
that use this one-stage method include research conducted by
K. Cai et al. [21] discussed fish detection using YOLOv3 and
MobileNetvl. The results obtained are data of 2000 smaller
images, thereby speeding up the computing process. YOLO is
one method that continues to be developed and widely used.
Until now, the latest version is YOLOvV7. C.-Y. Wang et al. [17]
conducted research using the YOLOv8 method by training bag-
of-freebies which resulted in effectively reducing about 40%
parameters and 50% object detector calculations, thus having a
high inference speed. D. Wu et al. [25] also conducted research
using YOLOvV7 and Data Augmentation for Camellia Oleifera
fruit detection which resulted in an average value of 96.03%
MAP, 94.76% precision, 95.54% recall, F1 score of 95.15%,
and detection time of 0.025 seconds per image. From some of
these sources, it can be seen that there has been no research to
detect chili peppers using YOLOV7.

This paper considers chili peppers growth detection using the
YOLOvV8 method [22-25]. In this investigation, YOLOV8 will
be applied to the detection of chili fruit on chili plants. The
results of this detection can be developed into several
applications, such as estimating the number of chilies to be
harvested, calculation of health and fertility in chili plants,
detection of damage to chili fruit before harvesting, detecting
the type or size of chili fruit, and so on.
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Il. METHODOLOGY

A. Data Collection

This research was conducted in an outdoor chili farm located
in the D3 area of the Faculty of Agriculture, Universitas
Padjadjaran, Sumedang, Indonesia. There are 18 rows of beds
with a length and width of 6 meters and 1.2 meters respectively.
The tools and materials used in this Object Detection research
are IP Camera, Jetson Nano/Laptop, website, and chili plants.
The camera is installed in the field to get image data of chili
peppers to be studied. The image is then forwarded to the Jetson
Nano/Laptop as a processor to be processed using the YOLOvV8
algorithm. In this case, the data used as a program dataset is
obtained from various sources on the internet media, as a
temporary substitute, during the trial process. The results
obtained from the process are then displayed on the website in
the form of information that can be read easily by users. This
research is one of a series of studies that discuss the irrigation
system of chili plants, which consists of Soil Moisture, Air
Temperature and Humidity, and Soil pH systems as shown in
Fig. 1.

OBJECT Soil Moisture || Soil pH || Air Temperature
DETECTION Sensor System || Sensor || and Humidity
SYSTEM System || Sensor System

IP Camera Nvidia Database Server
Jetson/Laptop
= v k
- Soil Valve b
, ‘ N
Power Supply Adaptor (Control System  “lg 101 0id Valve for Chili Plant

Fig 1. Block Diagram of the Whole System

B. YOLOvV8 Architecture

You Only Look Once (YOLO) is a single-stage Object
Detection algorithm that has high detection accuracy and speed.
The current development version, YOLOVS, is estimated to be
120% faster than YOLOvV5, 180% faster in terms of FPS
compared to YOLO X, 1200% faster than Dual-Swin-T, 550%
faster than ConvNext, and 500% faster than SWIN-L.

The YOLO algorithm usually performs classification and
object detection simultaneously by only looking once at the
input image or video, because YOLO is a single-stage object
detection method. This method is able to speed up the detection
process in YOLO, compared to other methods that belong to the
two-stage object detection method.

YOLOV8 consists of four networks, namely input, backbone,
neck, and head or dense prediction as illustrated in Fig. 2. The
input network is the outermost part where the image or video to
be processed is input in the form of a 2 or 3-dimensional RGB
array. In this section, the image or video is resized to 640 x 640
pixels or 640 x 640 x 3, Mosaic data enhancement, and image
scaling before being fed into the backbone network. In the case
of chili peppers, the resulting dataset has non-uniform samples,
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with small and large samples. The input image will be
adaptively scaled, if the sample is too small it will be spliced,
and if the input image is too large it will be cropped, so as to
achieve an even size.

The second YOLOvV8 network from the outside, the
backbone, is the Convolutional Layer or where the Pre-Trained
Neural Network occurs. This network contains 50 integrated
modules, including the CBS composite module, Efficient Layer
Aggregation Networks (ELAN), and MP. The CBS composite
module comprises standard convolution, a BN layer, and SiL U,
which together facilitate the activation function through these
three components. The architecture of the ELAN module in
YOLOvV8 is modified into Extended Efficient Layer
Aggregation Networks (E-ELAN). E-ELAN uses group shift
convolution to extend the channel and cardinality of
computation blocks. The feature map of each compute block
will be randomized to a group size g and merged together. This
aims to perform cardinality merging. The MP module consists
of Maxpool and CBS, which are divided into MP1 and MP2.

r
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Fig. 2. YOLOV8 Architecture

The third network on YOLOV8 from the outside is the neck.
The neck network is the connecting network between the
backbone and the head. This network functions as an Object
Detector Model that collects feature maps for different stages.
This is because in the head network the classification and
localization of objects are performed. In the neck network,
there is no special process like in the input and backbone, so
this network is often not mentioned in the YOLOVS structure.

The head network or dense prediction in YOLOv8 combines
the advantages of Feature Pyramid Network (FPN) and Path
Aggregation Network (PAN), which then becomes PA-FPN.
This network architecture incorporates the SPPCSPC module
along with a series of CBS, MP, Catconv, and repconv modules.
The SPPCSPC module shares similarities with the SPPF
module in YOLOVS5, designed to enhance the receptive field
and improve feature extraction for object detection tasks.
Initially, an input feature map of size 512 x 20 x 20 is processed
through three successive convolution operations to refine
feature representation. To capture multi-scale spatial
information, max-pooling operations are applied three times
with kernel sizes of 5, 9, and 13, where adaptive padding
ensures proper alignment. Finally, the output feature map,
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maintaining its original size of 512 x 20 x 20, is obtained by
integrating the results, utilizing only the 1 x 1 convolution
operation without additional pooling layers. This design
enables the SPPCSPC module to effectively extract multi-scale
object features while preserving spatial resolution, contributing
to more robust and accurate object detection.

C. Images and Dataset Preprocessing

First, a total of 1099 chili image data was collected to be used
as a dataset. There are no repeated images in the dataset, aiming
to prevent model over fitting. The dataset is divided into 94%
train data, 4% validation data, and 2% test data. The data will
then enter the labeling process using the Roboflow platform.
The image dataset will be given a bounding box outside the
target chili fruit to be labeled based on the smallest bounding
box around the chili fruit, to ensure that the background area of
the image is carried in the bounding box as little as possible.
Before the data is exported, the image is automatically
augmented. This serves to multiply the image data, without
repetition. The image can be augmented into several models
such as mirrored horizontally or vertically, rotated in various
directions and angles, given cover or noise, color changes, and
S0 on.

The dataset was exported by multiplying the data by twice
the previous data, by doing vertical and horizontal reversals,
and rotating the image copy 90 degrees to the right, left, top,
and bottom. This resulted in a dataset of 2077 different images.
TXT annotations and YAML configurations will be saved in
YOLOV8 format in which there are bounding box coordinates
for reference in the training process later. The use of YOLOVS8
format also intends to simplify the data processing process.
Where the data does not need to be converted back into a format
supported by the YOLOV8 program.

D. Training Images and Datasets

This research was conducted on a computer with Windows
11 operating system, configured with NVDIA-SMI 525.85.12,
GPU runtime, and PyTorch 2.1.0 deep learning framework. The
programming language used was Python 3.10 with Google
Collabority platform, CUDA 12.0, and Ultralystic
YOLOv8.0.20.

The dataset images to be input were set at a resolution of 640
X 640 pixels, with a speed of 4.0ms pre-process, 7.1ms
inference, 0.0ms loss, 3.1ms post-process per image. To record
data, observe loss, and save model weights for each epoch
during the training period, the Tensorboard visualization tool is
used, which is built-in to Ultralystic YOLOv8. The model will
continue to be trained until it reaches a certain accuracy value.
The weight of the model file is then exported to be included in
the fruit calculation algorithm if the model has reached the
intended accuracy during this training process. However, if the
accuracy value has not been reached then the training will
continue to be repeated.

E. Indicator Evaluation

To evaluate the accuracy and performance of the model,
Precision calculations are used to measure the level of True
Positive values obtained from all positive predictions, Recall to

ISSN: 1942-9703 / CC BY-NC-ND @



6 INTERNETWORKING INDONESIA JOURNAL

measure the True Positive level of all predictions, Mean
Average Precision (mAP) to measure the performance of the
object detection model, and F1 score, with the following
equation form:

Precision:
P =_——x100% 1)
Recall
—— x 100% 2
TP+FN
Average Precision:
AP = fp“ P(r)dr 3)
Mean average Precision:
1
YL, AP @)
F1 Score:
F1=2x M (5)

where True Positive (TP) represents the number of correctly
detected chili fruit objects; False Positive (FP) represents the
number of other objects detected as chili fruit, and False
Negative (FN) represents the number of undetected or missed
chili fruit. Overall, this study can be summarized and
represented in the flowchart shown in Fig. 3.

Training Stage

Labelling Custom

Detection Stage

YOLOvS

Dataset 4
Training Dataset Displays bounding

Model using YOLOv8

l

Model accuracy testing

YES

Export Output
Weight Model

boxes and Class name

l

Advanced Program as
Implementation from
this Result

|

Upload Finished Result
to Database Server

Fig. 3. Flowchart of Object Detection System

I1l. RESULT AND DISCUSSION

A. Indicator Achievement

The YOLOv8 model was employed for chili fruit detection,
using diverse datasets from various media. Fig. 4 illustrates the
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curves for Box Loss, Class Loss, and Distribution Focal Loss,
showing a consistent decrease, which indicates the model’s
improved localization and classification performance. The
precision curve reveals a positive correlation with confidence
thresholds; higher confidence values result in greater precision,
demonstrating that true positive detections significantly
outnumber false negatives. This highlights the model’s
reliability in accurately detecting chili fruits while minimizing
missed instances, a critical factor for agricultural yield
estimation. While the model shows strong performance, further
improvements could be achieved by expanding the dataset with
more diverse scenarios and fine-tuning hyperparameters. These
steps would enhance robustness and ensure reliable detection
across real-world conditions.
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Fig. 4. (a) Precision Curve (b) Recall Curve

The results of the experiments are presented in Table 1. The
data shows the accuracy values derived from the chili object
detection images, based on calculations of precision, recall,
average precision, mAP, and F1 score. The performance data
for the chili fruit detection model across 15 trials reveals a
consistent improvement in key metrics, including Precision,
Recall, Average Precision (AP), Mean Average Precision
(mAP), and F1 Score. Precision improves from 75.4% in trial 1
to 85.1% in trial 15, indicating that the model becomes
increasingly adept at correctly identifying chili fruits while
reducing false positives. Similarly, recall increases from 78.9%
to 85.5%, reflecting the model’s enhanced ability to detect
relevant instances of chili fruits and minimize missed
detections.

The Average Precision (AP) and Mean Average Precision
(mAP) also show steady progress, rising from 74.7 and 75.4 in
the first trial to 79.9 and 82.0 in the final trial, respectively.
These metrics confirm the model's growing reliability in
assigning accurate confidence scores and achieving consistent
performance across diverse test cases. The F1 score, a balanced
measure of precision and recall, climbs from 77.0 in trial 1 to
84.9 in trial 15, demonstrating that the model strikes an
effective balance between identifying all chili fruits and
accurately classifying them.
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TABLE |
PREDICTED INDICATOR ACHIEVEMENT VALUE

Trial Precision Recall AP MAP F1
Number (%) (%)

1 75.4 78.9 74.7 75.4 77

2 76.1 79.3 75.4 75.9 775
3 76.9 79.8 75.6 76.5 78
4 77.2 80.1 75.9 77.2 78.4
5 77.8 80.5 76.3 77.8 78.9
6 80.6 80.9 76.7 78.1 79.5
7 81.1 814 77 78.4 80.3
8 81.8 81.8 77.3 78.9 80.7
9 82.3 82.5 7.7 79.4 81.4
10 83.6 83.1 77.9 79.8 81.9
11 83.9 83.8 78.2 80.1 82.5
12 84.2 84.1 785 80.5 83.1
13 84.4 84.8 79 80.7 83.7
14 84.7 85.3 79.3 81.4 84.3
15 85.1 85.5 79.9 82 84.9

This steady improvement across all metrics highlights the
model’s robustness and suitability for practical applications in
agricultural systems. The rising mAP, in particular, underscores
its capability to handle various challenging scenarios, such as
detecting smaller or partially occluded chili fruits. By the final
trial, the model achieves a high level of accuracy, precision, and
recall, making it reliable for deployment in automated chili fruit
detection tasks. Further enhancements could involve expanding
the training dataset or refining the model parameters to further
boost its performance.

The confusion matrix provides a comprehensive overview
of the performance of the YOLOvV8 model in detecting chili
fruits across multiple trials. By breaking down the detection
results into True Positives (TP), False Positives (FP), False
Negatives (FN), and True Negatives (TN), it offers insights into
the model's precision, recall, and overall classification
accuracy. This analysis helps evaluate the effectiveness of the
detection process and highlights areas for potential
improvement. The confusion matrix derived from the data is
presented in Fig. 5.

Fig. 6 demonstrates the relationship between confidence
thresholds and key performance metrics—Precision, Recall,
and F1-Score—for the YOLOV8 model in chili fruit detection.
The Precision curve reflects the proportion of true positive
detections relative to all positive predictions, generally
improving as confidence increases due to a reduction in false
positives. In contrast, the Recall curve shows the proportion of
true positive detections among all actual positives, which tends
to decline with higher confidence thresholds as stricter criteria
exclude some true positives. The F1-Score curve balances
precision and recall, highlighting the confidence level at which
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the model achieves optimal performance. This analysis is
essential for determining the most effective confidence
threshold for practical applications, ensuring the model delivers
the desired balance between precision and recall.
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Fig. 5. Confusion Matrix
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Fig. 6 .The relationship between confidence thresholds and key
performance metrics—Precision, Recall, and F1-Score

B. Object Detection Result

The detection process was performed on both a test dataset
and additional video footage of chili plants bearing fruit. The
use of video highlights the algorithm's capability for real-time
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object detection, demonstrating its practical applicability in
dynamic environments. The results of object detection on still
images from the test dataset are illustrated in Fig. 7(a),
showcasing the model's accuracy in identifying and localizing
chili fruits under controlled conditions. Meanwhile, Fig. 7(b)
presents the real-time object detection results, demonstrating
the algorithm's ability to maintain performance in live
scenarios. This dual evaluation approach underscores the
robustness and adaptability of the YOLOv8 model for
agricultural applications. The real-time detection capability is
particularly valuable for tasks such as automated harvesting,
monitoring crop health, or yield estimation. Additionally, it
reflects the model's capacity to handle variable lighting, motion,
and occlusion commonly encountered in field environments.
By integrating video-based detection, the system demonstrates
potential for deployment in smart farming solutions, offering
both scalability and efficiency in managing large agricultural
areas.

Fig. 7 illustrates the results of chili fruit detection using the
YOLOV8 model, with each detected chili enclosed in a red
bounding box labeled “Chilli” along with a confidence score.
The confidence scores, such as 0.88, 0.57, and 0.49, represent
the model's certainty about each detection, with higher values
indicating greater confidence in the accuracy of the prediction.
The model effectively identifies and localizes chili fruits of
various sizes and orientations, even amidst the plant's dense
foliage. This demonstrates its robustness in detecting objects
under real-world conditions. However, some detections with
lower confidence scores (e.g., 0.29) suggest areas where the
model may benefit from refinement, such as threshold
adjustment or additional training data. The figure also
highlights the model's ability to handle variability in detection,
including overlapping and occluded objects, although these
conditions could impact overall performance. This outcome
underscores the potential of the YOLOvV8 model for agricultural
applications, particularly in tasks like chili fruit monitoring and
yield estimation.

Turnip Et Al

(b)

Fig. 7. Prediction results of Chili image (a) Chili video (b)

IVV. CONCLUSION

To help the development in agriculture, specifically to detect
chili fruit, a real-time and accurate object detection method
using the YOLOVS target detection network is proposed. This
chili fruit detection can be developed and applied in various
matters related to the growth and development of chili plants.
There are 2077 data used as datasets and divided into 94% train
data, 4% validation data, and 2% test data. The process of
labeling the training data uses the Roboflow platform. The
results showed the detection performance value of YOLOv8
with mAP 75.4%, F1 score 77.21%, Precision 74.7%, Recall
79.9%, and data processing speed 6.9ms per image. The value
of indicators with an average value in the 70s is caused by very
few iterations in the training process, accordingly, reducing the
performance in detecting chili fruit objects.
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