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Abstract— Agriculture plays a critical role in ensuring food 

security, yet technological advancements in this sector remain 

limited compared to its potential. Modern innovations, such as 

Object Detection, offer promising solutions to enhance 

agricultural efficiency and productivity. This study explores the 

application of the YOLOv8 algorithm, the latest evolution of the 

YOLO object detection framework, to detect chili fruits rapidly 

and accurately. By employing this method, farmers can estimate 

potential chili harvests, streamlining yield prediction and 

improving decision-making processes in real time. Experimental 

results demonstrate that the model achieved a mean Average 

Precision (mAP) of 75.4%, an F1 score of 77.21%, a Precision of 

74.7%, a Recall of 79.9%, and a processing speed of 6.9 

milliseconds per image. These results highlight the model's 

effectiveness in practical applications but also indicate room for 

improvement, as performance is influenced by the limited number 

of training iterations. Future work could focus on increasing 

training iterations and expanding the dataset to enhance detection 

accuracy and robustness, ultimately supporting precision 

agriculture advancements. 

 
Index Terms—Object detection, YOLO algorithm, Real-time, 

Precision agriculture, Chili Pepper. 

I. INTRODUCTION 

HE ever-evolving modern society has led to the growth of 

global consumption levels [1]. According to the Central 

Bureau of Statistics, Indonesia's market expenditure share in 

2022 amounted to 50.14 percent with an increase of 0.89 

percent from the previous year. The share of food expenditure 

itself is inversely proportional to food security. The higher the 

food expenditure figure, the worse the food security value [2]. 

Indonesia itself has committed to maintaining national food 

security by increasing production in agriculture, with a 

contribution of 12.98% to the national economy [3]. 

Agriculture also has the highest percentage for the main 

 
 

employment structure in Indonesia in 2022 at 28.61% [4]. 

However, in Indonesia agriculture is still done conventionally 

which is not effective and efficient. Not much technology has 

been applied to this field.  

There are several main problems that become obstacles and 

need to be solved, namely the accuracy of detection needs to be 

continuously improved, the speed of inference in the model 

used, and the use of appropriate and lightweight models for data 

processing [5]. Inefficient agricultural methods can cause 

agricultural pollution, and in the event of crop disorders, such 

as diseases and defects, manual diagnosis will be very slow, 

laborious, and require large capital [5-6]. 

The development of technology plays a major role in 

agriculture [1-3][5][6-10] which allows farmers to get 

information quickly, accurately, and take immediate action if 

there are obstacles, and can improve the quality of crops 

[5][11]. One technology that is very useful in agriculture is 

Image Processing technology, used as an object detector 

(Object Detection) [12]. Object Detection technology has been 

widely developed and applied in various fields, such as disease 

detection in the health sector, facial recognition in the security 

sector, automatic drivers, smart robots, and so on. In 

agriculture, using Object Detection technology to monitor the 

state of plants is much more efficient than manual detection [13-

14].  This is because Object Detection technology is able to 

monitor the plants at all times while the system is active, so that 

if something happens that is not as it should be, it can be 

detected immediately. This process is very beneficial for plant 

growth.  

Basically, Object Detection algorithms have been developed 

for plant detection by extracting target features into complex 

scenes. Several techniques, including LiDAR, sonar, RGB-

Depth Map (RGB-D) Imaging Vision, Region-based 

Convolutional Neural Networks (R-CNN), and Feedforward 

Neural Networks (FNN), utilize convolution operations and 

feature intricate architectures. Numerous CNN-based 

algorithms, such as YOLO and Faster R-CNN, have been 

extensively employed for fruit object detection [5][11].  

One method that is now being developed for Object 

Detection is You Only Look Once (YOLO). YOLO has far 

superior detection accuracy and speed compared to other 

methods [1][5][12-13]. This method falls into the category of 
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one-stage algorithms, which obtain location and category 

information of objects directly [15-16]. The latest research of 

YOLO is YOLOv7 which is designed using bag-of-freebies for 

real time detection with high accuracy and low inference cost 

[1][17].  

Several object detection methods have been developed, such 

as the one developed by H. S. Gill et al. [18] that improved fruit 

recognition from images using deep learning. The research 

combines CNN, RNN, and LSTM methods for fruit 

classification based on optimal features and selected 

derivatives, with the resulting accuracy being very effective. 

However, because it combines 3 methods at once, the 

computational process takes a long time and is a relatively 

heavy process [18].  

Object Detection methods using two-stage algorithms such 

as R-CNN, LetNet, ResNet, SPP-Net, and the like have also 

been widely researched. As conducted by S. Wan and S. 

Goudos [14] in their research discussing the Faster R-CNN 

method for detecting multi-class fruits using 4000 images 

resulting in an increase in convolutional and pooling layers 

achieved has a high and fast accuracy of 91% mAP. W. Zhang 

et al. [19] have also conducted research using the ResNet-50 

method to evaluate wheat quality. The research resulted in an 

average accuracy of 97.5%.  One of the causes of the lack of 

accuracy is due to the image quality that is often lacking. The 

integration of LeNet-5, ResNet-34, and VGG-16 models with 

an image enhancement approach to refine particle features in 

images has been explored, resulting in a 1% accuracy 

improvement over models without enhancement [20]. 

 Recent research has favored one-stage methods such as SSD, 

YOLO, and RPN [15] over two-stage methods. Some studies 

that use this one-stage method include research conducted by 

K. Cai et al. [21] discussed fish detection using YOLOv3 and 

MobileNetv1. The results obtained are data of 2000 smaller 

images, thereby speeding up the computing process. YOLO is 

one method that continues to be developed and widely used. 

Until now, the latest version is YOLOv7. C.-Y. Wang et al. [17] 

conducted research using the YOLOv8 method by training bag-

of-freebies which resulted in effectively reducing about 40% 

parameters and 50% object detector calculations, thus having a 

high inference speed. D. Wu et al. [25] also conducted research 

using YOLOv7 and Data Augmentation for Camellia Oleifera 

fruit detection which resulted in an average value of 96.03% 

mAP, 94.76% precision, 95.54% recall, F1 score of 95.15%, 

and detection time of 0.025 seconds per image. From some of 

these sources, it can be seen that there has been no research to 

detect chili peppers using YOLOv7.  

This paper considers chili peppers growth detection using the 

YOLOv8 method [22-25]. In this investigation, YOLOv8 will 

be applied to the detection of chili fruit on chili plants. The 

results of this detection can be developed into several 

applications, such as estimating the number of chilies to be 

harvested, calculation of health and fertility in chili plants, 

detection of damage to chili fruit before harvesting, detecting 

the type or size of chili fruit, and so on. 

II. METHODOLOGY 

A. Data Collection 

This research was conducted in an outdoor chili farm located 

in the D3 area of the Faculty of Agriculture, Universitas 

Padjadjaran, Sumedang, Indonesia. There are 18 rows of beds 

with a length and width of 6 meters and 1.2 meters respectively. 

The tools and materials used in this Object Detection research 

are IP Camera, Jetson Nano/Laptop, website, and chili plants. 

The camera is installed in the field to get image data of chili 

peppers to be studied. The image is then forwarded to the Jetson 

Nano/Laptop as a processor to be processed using the YOLOv8 

algorithm. In this case, the data used as a program dataset is 

obtained from various sources on the internet media, as a 

temporary substitute, during the trial process. The results 

obtained from the process are then displayed on the website in 

the form of information that can be read easily by users. This 

research is one of a series of studies that discuss the irrigation 

system of chili plants, which consists of Soil Moisture, Air 

Temperature and Humidity, and Soil pH systems as shown in 

Fig. 1. 

 
Fig 1. Block Diagram of the Whole System 

B. YOLOv8 Architecture 

You Only Look Once (YOLO) is a single-stage Object 

Detection algorithm that has high detection accuracy and speed. 

The current development version, YOLOv8, is estimated to be 

120% faster than YOLOv5, 180% faster in terms of FPS 

compared to YOLO X, 1200% faster than Dual-Swin-T, 550% 

faster than ConvNext, and 500% faster than SWIN-L. 

The YOLO algorithm usually performs classification and 

object detection simultaneously by only looking once at the 

input image or video, because YOLO is a single-stage object 

detection method.  This method is able to speed up the detection 

process in YOLO, compared to other methods that belong to the 

two-stage object detection method. 

YOLOv8 consists of four networks, namely input, backbone, 

neck, and head or dense prediction as illustrated in Fig. 2. The 

input network is the outermost part where the image or video to 

be processed is input in the form of a 2 or 3-dimensional RGB 

array. In this section, the image or video is resized to 640 x 640 

pixels or 640 x 640 x 3, Mosaic data enhancement, and image 

scaling before being fed into the backbone network. In the case 

of chili peppers, the resulting dataset has non-uniform samples, 
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with small and large samples. The input image will be 

adaptively scaled, if the sample is too small it will be spliced, 

and if the input image is too large it will be cropped, so as to 

achieve an even size.  

The second YOLOv8 network from the outside, the 

backbone, is the Convolutional Layer or where the Pre-Trained 

Neural Network occurs. This network contains 50 integrated 

modules, including the CBS composite module, Efficient Layer 

Aggregation Networks (ELAN), and MP. The CBS composite 

module comprises standard convolution, a BN layer, and SiLU, 

which together facilitate the activation function through these 

three components. The architecture of the ELAN module in 

YOLOv8 is modified into Extended Efficient Layer 

Aggregation Networks (E-ELAN). E-ELAN uses group shift 

convolution to extend the channel and cardinality of 

computation blocks. The feature map of each compute block 

will be randomized to a group size g and merged together. This 

aims to perform cardinality merging. The MP module consists 

of Maxpool and CBS, which are divided into MP1 and MP2.  

 
Fig. 2. YOLOv8 Architecture 

 

The third network on YOLOv8 from the outside is the neck. 

The neck network is the connecting network between the 

backbone and the head. This network functions as an Object 

Detector Model that collects feature maps for different stages. 

This is because in the head network the classification and 

localization of objects are performed.  In the neck network, 

there is no special process like in the input and backbone, so 

this network is often not mentioned in the YOLOv8 structure. 

The head network or dense prediction in YOLOv8 combines 

the advantages of Feature Pyramid Network (FPN) and Path 

Aggregation Network (PAN), which then becomes PA-FPN. 

This network architecture incorporates the SPPCSPC module 

along with a series of CBS, MP, Catconv, and repconv modules. 

The SPPCSPC module shares similarities with the SPPF 

module in YOLOv5, designed to enhance the receptive field 

and improve feature extraction for object detection tasks. 

Initially, an input feature map of size 512 × 20 × 20 is processed 

through three successive convolution operations to refine 

feature representation. To capture multi-scale spatial 

information, max-pooling operations are applied three times 

with kernel sizes of 5, 9, and 13, where adaptive padding 

ensures proper alignment. Finally, the output feature map, 

maintaining its original size of 512 × 20 × 20, is obtained by 

integrating the results, utilizing only the 1 × 1 convolution 

operation without additional pooling layers. This design 

enables the SPPCSPC module to effectively extract multi-scale 

object features while preserving spatial resolution, contributing 

to more robust and accurate object detection. 

C. Images and Dataset Preprocessing 

First, a total of 1099 chili image data was collected to be used 

as a dataset. There are no repeated images in the dataset, aiming 

to prevent model over fitting. The dataset is divided into 94% 

train data, 4% validation data, and 2% test data. The data will 

then enter the labeling process using the Roboflow platform. 

The image dataset will be given a bounding box outside the 

target chili fruit to be labeled based on the smallest bounding 

box around the chili fruit, to ensure that the background area of 

the image is carried in the bounding box as little as possible. 

Before the data is exported, the image is automatically 

augmented. This serves to multiply the image data, without 

repetition. The image can be augmented into several models 

such as mirrored horizontally or vertically, rotated in various 

directions and angles, given cover or noise, color changes, and 

so on.  

The dataset was exported by multiplying the data by twice 

the previous data, by doing vertical and horizontal reversals, 

and rotating the image copy 90 degrees to the right, left, top, 

and bottom. This resulted in a dataset of 2077 different images. 

TXT annotations and YAML configurations will be saved in 

YOLOv8 format in which there are bounding box coordinates 

for reference in the training process later. The use of YOLOv8 

format also intends to simplify the data processing process. 

Where the data does not need to be converted back into a format 

supported by the YOLOv8 program.  

D. Training Images and Datasets 

This research was conducted on a computer with Windows 

11 operating system, configured with NVDIA-SMI 525.85.12, 

GPU runtime, and PyTorch 2.1.0 deep learning framework. The 

programming language used was Python 3.10 with Google 

Collabority platform, CUDA 12.0, and Ultralystic 

YOLOv8.0.20. 

The dataset images to be input were set at a resolution of 640 

x 640 pixels, with a speed of 4.0ms pre-process, 7.1ms 

inference, 0.0ms loss, 3.1ms post-process per image. To record 

data, observe loss, and save model weights for each epoch 

during the training period, the Tensorboard visualization tool is 

used, which is built-in to Ultralystic YOLOv8. The model will 

continue to be trained until it reaches a certain accuracy value. 

The weight of the model file is then exported to be included in 

the fruit calculation algorithm if the model has reached the 

intended accuracy during this training process. However, if the 

accuracy value has not been reached then the training will 

continue to be repeated.  

E. Indicator Evaluation 

To evaluate the accuracy and performance of the model, 

Precision calculations are used to measure the level of True 

Positive values obtained from all positive predictions, Recall to 
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measure the True Positive level of all predictions, Mean 

Average Precision (mAP) to measure the performance of the 

object detection model, and F1 score, with the following 

equation form: 

Precision: 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%                           (1) 

 

Recall 

𝑅 =
𝑇𝑝

𝑇𝑃+𝐹𝑁
× 100%                         (2) 

Average Precision: 

 𝐴𝑃 = ∫
𝑎

𝑝
𝑃(𝑟)𝑑𝑟                       (3) 

Mean average Precision: 
1

𝑛
∑𝑛
𝑖=1 𝐴𝑃𝐼                            (4) 

F1 Score: 

 𝐹1 = 2 ×
𝑃×𝑅

𝑃+𝑅
                             (5) 

 

where True Positive (TP) represents the number of correctly 

detected chili fruit objects; False Positive (FP) represents the 

number of other objects detected as chili fruit, and False 

Negative (FN) represents the number of undetected or missed 

chili fruit. Overall, this study can be summarized and 

represented in the flowchart shown in Fig. 3. 

 

 
Fig. 3. Flowchart of Object Detection System 

III. RESULT AND DISCUSSION 

A. Indicator Achievement 

The YOLOv8 model was employed for chili fruit detection, 

using diverse datasets from various media. Fig. 4 illustrates the 

curves for Box Loss, Class Loss, and Distribution Focal Loss, 

showing a consistent decrease, which indicates the model’s 

improved localization and classification performance. The 

precision curve reveals a positive correlation with confidence 

thresholds; higher confidence values result in greater precision, 

demonstrating that true positive detections significantly 

outnumber false negatives. This highlights the model’s 

reliability in accurately detecting chili fruits while minimizing 

missed instances, a critical factor for agricultural yield 

estimation. While the model shows strong performance, further 

improvements could be achieved by expanding the dataset with 

more diverse scenarios and fine-tuning hyperparameters. These 

steps would enhance robustness and ensure reliable detection 

across real-world conditions. 

 
Fig. 4. (a) Precision Curve (b) Recall Curve 

The results of the experiments are presented in Table 1. The 

data shows the accuracy values derived from the chili object 

detection images, based on calculations of precision, recall, 

average precision, mAP, and F1 score. The performance data 

for the chili fruit detection model across 15 trials reveals a 

consistent improvement in key metrics, including Precision, 

Recall, Average Precision (AP), Mean Average Precision 

(mAP), and F1 Score. Precision improves from 75.4% in trial 1 

to 85.1% in trial 15, indicating that the model becomes 

increasingly adept at correctly identifying chili fruits while 

reducing false positives. Similarly, recall increases from 78.9% 

to 85.5%, reflecting the model’s enhanced ability to detect 

relevant instances of chili fruits and minimize missed 

detections. 

The Average Precision (AP) and Mean Average Precision 

(mAP) also show steady progress, rising from 74.7 and 75.4 in 

the first trial to 79.9 and 82.0 in the final trial, respectively. 

These metrics confirm the model's growing reliability in 

assigning accurate confidence scores and achieving consistent 

performance across diverse test cases. The F1 score, a balanced 

measure of precision and recall, climbs from 77.0 in trial 1 to 

84.9 in trial 15, demonstrating that the model strikes an 

effective balance between identifying all chili fruits and 

accurately classifying them. 
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TABLE I 
PREDICTED INDICATOR ACHIEVEMENT VALUE 

Trial 

Number 

Precision 

(%) 

Recall 

(%) 

AP  MAP  F1  

1 75.4 78.9 74.7 75.4 77 

2 76.1 79.3 75.4 75.9 77.5 

3 76.9 79.8 75.6 76.5 78 

4 77.2 80.1 75.9 77.2 78.4 

5 77.8 80.5 76.3 77.8 78.9 

6 80.6 80.9 76.7 78.1 79.5 

7 81.1 81.4 77 78.4 80.3 

8 81.8 81.8 77.3 78.9 80.7 

9 82.3 82.5 77.7 79.4 81.4 

10 83.6 83.1 77.9 79.8 81.9 

11 83.9 83.8 78.2 80.1 82.5 

12 84.2 84.1 78.5 80.5 83.1 

13 84.4 84.8 79 80.7 83.7 

14 84.7 85.3 79.3 81.4 84.3 

15 85.1 85.5 79.9 82 84.9 

 

This steady improvement across all metrics highlights the 

model’s robustness and suitability for practical applications in 

agricultural systems. The rising mAP, in particular, underscores 

its capability to handle various challenging scenarios, such as 

detecting smaller or partially occluded chili fruits. By the final 

trial, the model achieves a high level of accuracy, precision, and 

recall, making it reliable for deployment in automated chili fruit 

detection tasks. Further enhancements could involve expanding 

the training dataset or refining the model parameters to further 

boost its performance. 

The confusion matrix provides a comprehensive overview 

of the performance of the YOLOv8 model in detecting chili 

fruits across multiple trials. By breaking down the detection 

results into True Positives (TP), False Positives (FP), False 

Negatives (FN), and True Negatives (TN), it offers insights into 

the model's precision, recall, and overall classification 

accuracy. This analysis helps evaluate the effectiveness of the 

detection process and highlights areas for potential 

improvement. The confusion matrix derived from the data is 

presented in Fig. 5.  

Fig. 6 demonstrates the relationship between confidence 

thresholds and key performance metrics—Precision, Recall, 

and F1-Score—for the YOLOv8 model in chili fruit detection. 

The Precision curve reflects the proportion of true positive 

detections relative to all positive predictions, generally 

improving as confidence increases due to a reduction in false 

positives. In contrast, the Recall curve shows the proportion of 

true positive detections among all actual positives, which tends 

to decline with higher confidence thresholds as stricter criteria 

exclude some true positives. The F1-Score curve balances 

precision and recall, highlighting the confidence level at which 

the model achieves optimal performance. This analysis is 

essential for determining the most effective confidence 

threshold for practical applications, ensuring the model delivers 

the desired balance between precision and recall. 

 
Fig. 5. Confusion Matrix 

 

 

Fig. 6 .The relationship between confidence thresholds and key 
performance metrics—Precision, Recall, and F1-Score 

B. Object Detection Result 

 The detection process was performed on both a test dataset 
and additional video footage of chili plants bearing fruit. The 
use of video highlights the algorithm's capability for real-time 
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object detection, demonstrating its practical applicability in 
dynamic environments. The results of object detection on still 
images from the test dataset are illustrated in Fig. 7(a), 
showcasing the model's accuracy in identifying and localizing 
chili fruits under controlled conditions. Meanwhile, Fig. 7(b) 
presents the real-time object detection results, demonstrating 
the algorithm's ability to maintain performance in live 
scenarios. This dual evaluation approach underscores the 
robustness and adaptability of the YOLOv8 model for 
agricultural applications. The real-time detection capability is 
particularly valuable for tasks such as automated harvesting, 
monitoring crop health, or yield estimation. Additionally, it 
reflects the model's capacity to handle variable lighting, motion, 
and occlusion commonly encountered in field environments. 
By integrating video-based detection, the system demonstrates 
potential for deployment in smart farming solutions, offering 
both scalability and efficiency in managing large agricultural 
areas. 

Fig. 7 illustrates the results of chili fruit detection using the 
YOLOv8 model, with each detected chili enclosed in a red 
bounding box labeled “Chilli” along with a confidence score. 
The confidence scores, such as 0.88, 0.57, and 0.49, represent 
the model's certainty about each detection, with higher values 
indicating greater confidence in the accuracy of the prediction. 
The model effectively identifies and localizes chili fruits of 
various sizes and orientations, even amidst the plant's dense 
foliage. This demonstrates its robustness in detecting objects 
under real-world conditions. However, some detections with 
lower confidence scores (e.g., 0.29) suggest areas where the 
model may benefit from refinement, such as threshold 
adjustment or additional training data. The figure also 
highlights the model's ability to handle variability in detection, 
including overlapping and occluded objects, although these 
conditions could impact overall performance. This outcome 
underscores the potential of the YOLOv8 model for agricultural 
applications, particularly in tasks like chili fruit monitoring and 
yield estimation. 

 

(a) 

 

(b) 

Fig. 7. Prediction results of Chili image (a) Chili video (b) 

IV. CONCLUSION 

To help the development in agriculture, specifically to detect 

chili fruit, a real-time and accurate object detection method 

using the YOLOv8 target detection network is proposed. This 

chili fruit detection can be developed and applied in various 

matters related to the growth and development of chili plants.  

There are 2077 data used as datasets and divided into 94% train 

data, 4% validation data, and 2% test data. The process of 

labeling the training data uses the Roboflow platform. The 

results showed the detection performance value of YOLOv8 

with mAP 75.4%, F1 score 77.21%, Precision 74.7%, Recall 

79.9%, and data processing speed 6.9ms per image. The value 

of indicators with an average value in the 70s is caused by very 

few iterations in the training process, accordingly, reducing the 

performance in detecting chili fruit objects.  
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