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Abstract—Flight safety is of paramount importance, and 

preventive measures are essential to maintain stable airline 

performance while minimizing accidents linked to pilots' 

emotional responses. This study investigates pilots' fear reactions 

during flight simulations using electroencephalography (EEG) 

signals and the K-Nearest Neighbors (KNN) algorithm, chosen for 

its simplicity and high classification accuracy of 94.08%. By 

analyzing brainwave patterns, this study highlights the connection 

between pilots' mental states, including attention levels at varying 

altitudes, and overall flight performance. The findings contribute 

to the aviation industry's efforts to enhance safety by 

understanding and mitigating emotional factors that could affect 

pilot decision-making. 

 
Index Terms— Electroencephalography, Pilot, K-Nearest 

Neighbors. 

I. INTRODUCTION 

MODERN DEVELOPMENT presents several special challenges 

for pilots, one of which is altitude conditions that can cause 

various psychological reactions [1][2][3][4]. Detection and 

understanding of pilot altitude emotions is essential for 

improving flight systems because success in responding to and 

managing altitude emotions is critical to flight safety and 

performance [5][6]. The emotion of height, also known as 

aviophobia, can not only affect the overall performance of the 

pilot, but it can also cause extreme mental stress and tension 

[7][8]. In order to create effective intervention strategies and 

improve overall flight safety, it is essential to understand the 

emotional state of pilots [9][10]. 

Electroencephalogram (EEG) is one of the tests that can 

measure the electrical activity of the brain. In these situations, 

EEG can help understand how brain activity occurs during 

altitude [11]. EEG works to record and see the electrical 

amplitude of the brain with the placement of several electrodes 

on the human scalp. This understanding contributed to the 

creation of a useful high-altitude emotion detection system, 

which can track the emotional state of the pilo directly during 

flight [4][12].   

In the medical world, the role of EEG has been widely used 

to diagnose disorders in the brain because EEG can read 5 brain

 

 
 

waves consisting of delta, theta, alpha, beta, and gamma [13]. 

The active conditions for each type of wave are different. When 

a person falls asleep soundly and without dreams, delta waves 

are active with a frequency of 0.5–4 Hz and an amplitude of 

100–200 mV [14][15]. Theta waves are also active when very 

tired and close to sleep, with a frequency of 4–8 Hz and an 

amplitude of 5–10 mV [6][16][17]. When a person is calm or 

daydreaming, alpha waves are active with a frequency of 8–12 

Hz and an amplitude of 20–80 mV. When a person is in a 

normal or fully conscious state, beta waves travel, with a 

frequency of 12–25 Hz and an amplitude of 1–5 mV. The last 

is Traveling gamma waves, with a frequency of 25-60 Hz and 

an amplitude of 0.5-2 mV [18][19]. There are other studies that 

aim to detect fatigue in car drivers and aircraft pilots using non-

invasive methods [5]. However, the results of this test do not 

provide a quantitative synthesis of the findings, which may 

limit the robustness of the conclusions drawn [5][17]. 

This study aims to detect the emotional response of fear of 

heights to pilots with EEG signals, focusing on the use of the 

K-Nearest Neighbors (KNN) method as a classification tool. 

KNN was chosen for its simple nature, ability to handle high-

dimensional datasets, and ability to provide good results in the 

context of classification. Through this research, it is hoped that 

a deeper understanding of the relationship between EEG signals 

and altitude emotions will be obtained, as well as the possible 

application of this technology in improving pilot safety and 

well-being. This research was carried out when the pilot was in 

a maneuvering position using 16 subjects that would be 

classified as fear levels.  

II. METHODOLOGY 

This research was conducted in December 2022 and was 

conducted at Universitas Padjadjaran. In addition, we 

collaborated with the Indonesian Aviation Academy 

Banyuwangi to collect data for this study. The number of 

samples taken was 16 male and female samples. Subject data 

consisted of experienced and inexperienced individuals in flight 

at random. Before data collection, everyone involved in this 

study gave an explanation of the research objectives, processes, 

and procedures to be carried out. 

 During the study, to record the brain signals of the 

subjects, an EEG Mitsar 202 was used, and an electro cap was 

attached to the subject as well as an electro gel was applied to 

each EEG sensor to reduce the sound in the scalp in a relaxed 

state with the eyes open (Fig. 1a) [16]. There are 19 electrode 

channel channels, namely Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, 
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Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2[3]. 

 
Fig. 1.  (a)Electro-cap is attached to the subject (b) Subject in the maneuvering 

position (c) Placement of the electrode position on the human brain 

 

Then after that the EEG signal data will be recorded and 

displayed using the WinEEG Visible Software in Fig. 2, which 

will then use a bandpass filter to display the recording results, 

reduce noise and eliminate unwanted frequencies. The low 

cutoff value is 0.3 (0.53 Hz) and the high cutoff value is 50 Hz. 

 The data recorded and processed with WinEEG are in the 

form of Delta, Theta, Alpha, Beta 1, Beta 2, and Gamma. After 

the data is processed with WinEEG, the phi V data unit is 

entered into Microsoft Excel. Thus, MATLAB software can 

process data with the classification learner feature, which then 

enters data from Microsoft Excel. Next, decide what method to 

use; In this study, the K-Nearest Neighbors method was used. 

The K-Nearest Neighbors (KNN) method can be used to 

identify the emotional response of the pilot's altitude through 

the analysis of Electroencephalogram (EEG) signals. In this 

case, KNN functions as a classification algorithm that uses the 

principle that similar data tend to be in the same group. Using 

EEG signals, the KNN can find complex patterns that can 

indicate the emotional response of altitude in the pilot. EEG 

signals record the brain's electrical activity and changes in the 

frequency spectrum under various conditions, such as altitude. 

KNN works by measuring the distance between the data points 

to be predicted and the data points that are already in the 

exercise dataset. Therefore, KNN can account for patterns of 

brain activity in altitude situations similar to those that have 

been recorded in training data when analyzing EEG signals. 

The K value in KNN plays an important role, where the K value 

determines the number of nearest neighbors that will be used to 

predict the data class. In the detection of altitude emotions in 

pilots, choosing the right K value is essential to reduce noise 

and make more accurate predictions. This study seeks to 

simplify the difficulty of brain analysis during altitude 

situations by using KNN on EEG signals. A deeper 

understanding of EEG signal patterns allows this method to 

monitor and identify altitude emotions in pilots, which allows 

for the development of responsive and adaptive decision 

support systems in the world of aviation. 

Geometric distance calculations, Hamming, Manhattan, and 

Minkowski are some of the types of distance calculations that 

can be used in KNN, depending on the nature of the data and 

the problem at hand. Choosing the right distance metric is 

crucial because it can affect the final outcome of the KNN 

algorithm. Calculating geometric distances can be done using 

the following equation: 

𝐷𝑥𝑦 =  √∑𝑛
𝑖=1  (𝑥1 − 𝑦1)2                      (1) 

Hamming distance calculation can be done using the 

following equation: 

𝐷𝑥𝑦 =  
1

𝑛
∑𝑛

𝑖=1 |𝑥𝑖 − 𝑦𝑖|                        (2) 

Manhattan distance calculations can be done using the 

following equation:  

𝐷𝑥𝑦 = ∑𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖|                         (3) 

Minkowski's distance calculation can be done using the 

following equation: 

𝐷𝑥𝑦 = (∑𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖|𝑝)

(
1

𝑝
)
                     (4) 

With the following information: Proximity distance (D) is a 

concept that measures the level of similarity between two cases, 

namely data training (x) and data testing (y). n reflects the 

number of individual attributes between 1 to n. The similarity 

function f describes the similarity of individual attributes (i) 
between cases X and Y, with i ranging from 1 to n. 

 

 
Fig. 2. Scheme of EEG Data Processing 

III. RESULTS AND DISCUSSION 

The data that has been recorded has noise, a filtering process 

with a Band Pass Filter (BPF) is required with a range of 0.5 Hz 

to 50 Hz. Due to unnecessary signal cutting, the data stored is 

only necessary. The results of signal recording before and after 

the filtering process are compared in Fig. 3. Brain signals were 

obtained for three different conditions: the take-off condition, 

the maneuvering condition, and the landing condition. 

Therefore, the data is only taken from 85 - 155 seconds from 

the maneuver condition. 

Once the EEG signal filtering is complete, the next stage is 

data extraction. At this stage, amplitude is used to capture data 

from three types of brainwave signals: alpha, beta 1 and beta 2. 

The EEG spectroscopy method is used to obtain this amplitude. 
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Time intervals using fragments, using only EEG channels, 

epoch number 0, epoch length 1 second, overlapping none, time 

window Hanning, 3rd order polynomial trends, focus on slow 

waves with a signal power of 200, and a frequency range of 0.5 

to 50 Hz. data without additional processing, and data 

alignment of 5 epochs. Fig.4. shows the data extracted in the 

form of brain mapping, graphs, and Table 1 shows the 

amplitude values of each electrode point. Brain Mapping shows 

where the electrode points are located and the active areas of 

the brain. The whiter the color, the more active the signal in the 

area. 

 

In Fig 5. read the condition of the subject when he is 

conscious, namely when flying. Then the data will be displayed 

in the form of a graph which shows the amplitude value of each 

electrode point. 

 

 
TABLE I 

DATA RESULTS THAT HAVE BEEN EXTRACTED 

Subject Alpha Betha 1 Betha 2 Gamma 

Subject 2.243 1.586 1.734 1.664 

Subject 2 2.542 1.944 2.450 2.437 

Subject 3 2.040 1.373 1.334 1.563 

Subject 4 1.454 0 1.065 1.078 

Subject 5 3.083 1.633 1.864 1.605 

Subject 6 2.136 1.230 1.430 1.257 

Subject 7 2.080 1.496 1.610 1.479 

Subject 8 1.933 1.370 1.506 1.497 

Subject 9 1.551 0 0 0 

Subject 10 1.914 1.362 1.399 1.522 

Subject 11 2.990 1.747 1.729 1.541 

Subject 12 0 0 0 0 

Subject 13 1.961 1.379 1.465 1.342 

Subject 14 2.355 1.631 1.695 1.649 

Subject 15 2.355 1.631 1.695 1.649 

Subject 16 2.611 1.827 1.838 3.921 

 

 
(a) 

 
(b) 

Fig. 5 The amplitude of the waves that have been extracted into the form of a 
graph (a) inexperienced pilots (b) experienced pilots 

  

 

 
(a) 

 
(b) 

Fig. 3. Signal recording results (a) before (b) after cutting 

  

 

 
(a) 

 
(b) 

Fig. 4. The amplitude of the waves that have been extracted into the form of 
Brain Mapping (a) Inexperienced pilots (b) Experienced pilots 
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There are 304 data from 16 subjects that will be classified into 

5 categories and then filter, normalize and extract data from the 

16 subjects and determine the maximum, minimum, range, and 

interval values in Table 2. 

 
TABLE II 

RESULTS OF MAXIMUM, MINIMUM, RANGE AND INTERVAL VALUES 

Maximum Value 30.295 

Minimum Values 0 

Range 30.295 

Interval  6.059 

 

To determine the interval in the data classification, the 

maximum and minimum values that have been obtained are 

used. After that the data is normalized, the amplitude comes 

from the waves (Alpha, beta 1, beta 2, gamma) to get the total 

at each electrode location. The next step is grouped into 5 

categories, namely strongly Acrophobia, Active Acrophobia, 

Moderate Acrophobia, Low Acrophobia, and None 

Acrophobia. The results of the classification based on intervals 

are as follows: In the Acrophobia classification, the amplitude 

interval (uV) is used as a parameter. There are five categories 

with different amplitude ranges, namely Strongly Acrophobia 

(24,236 - 30,295 uV), Active Acrophobia (18,277 - 24,236 uV), 

Moderate Acrophobia (12,118 - 18,177 uV), Low Acrophobia 

(6059 - 12,118 uV), and No Acrophobia (0 - 6059 uV). 

 Furthermore, the data is used for classification learning in 

Matlab. To determine the level of accuracy, the KNN technique 

is used in this classification process. In this experiment, the 

authors conducted data training for each type of KNN method, 

which resulted in varying levels of accuracy in Table 3. The 

Weighted method is the most accurate and fast of all KKN 

models, with an accuracy of 94.08% and a prediction speed of 

1800 observations per second. 

 
TABLE III 

TRAINING RESULT METODE KNN 

Model type Accurac

y 

total 

cost 

Prediction 

Alert(obs/s

ec) 

Training 

Time 

(sec) 

Fine KNN 93.09% 21 1800  14.667  

Medium KNN 89.80% 31 1700  11.083  

Coarse KNN 80.92% 58 1600  10.646 

Cosine KNN 81.25% 57 1700  9.329  

Cubic KNN 88.16% 36 1700  14.737  

Weighted KNN 94.08% 18 1800  14.667 

 

The researcher uses the KNN method to process normalized 

extraction data, presenting it through various forms of data 

representation. The results of the test through the simulation 

show that the Weighted KNN method has the highest level of 

accuracy compared to the other five methods, reaching 94.08%. 

This method uses a variety of plots, such as dispersion plots, 

confusion matrix plots, and parallel coordinate plots. The high-

test results of the Weighted KNN plot show that this method is 

effective in processing and analyzing data correctly. 

In a scatter plot, the dots show the data for two numerical 

variables. In the context of model predictions, a scatter plot is 

used to visualize the model's performance by plotting predicted 

values against actual values. Each point on the plot represents a 

prediction made by the model. Dots (•) indicate correct 

predictions, while crosses (X) represent incorrect ones. As 

shown in Fig. 6, only a few incorrect predictions were made. 

The confusion matrix, which consists of four combinations of 

actual and predicted values, can also be used to assess the 

performance of the model. In combination this includes the 

Original Positive Value (TPR), which is the true positive 

proportion of all predicted positive samples; False Negative 

Value (FNR), which is the proportion of false negatives; 

Positive Prediction Value (PPV), which indicates the accuracy 

between the prediction and the actual classification; and False 

Discovery Value (FDR). The confusion matrix shows how well 

the model can correctly classify the data and find positive and 

negative cases precisely. We can evaluate the strengths and 

weaknesses of the model in predicting and classifying data by 

examining the combination of TPR, FNR, PPV, and FDR 

values. 

 
Fig. 6. Scatter Plot: dot (•) is correct and cross (X) is incorrect predictions. 

 

 In this analysis, the False Negative Rate (FNR) for the 

confusion matrix in Fig. 7 stands out, with the highest value 

being 57.1%. This indicates that a significant portion of true 

positives were misclassified as negatives, highlighting a key 

area for improvement in the model's performance. Looking into 

the individual categories, the True Positive Rate (TPR) for the 

Strongly Acrophobic category was relatively high at 83.3%, 

meaning that the model was able to correctly classify the 

majority of instances in this category. However, this also 

suggests that there is room for improvement, given the elevated 

FNR of 16.7%. For the Acrophobia Note category, the model 

performed exceptionally well, achieving a TPR of 98.8%, 
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signifying that nearly all instances in this category were 

accurately identified. Additionally, the FNR for this category 

was remarkably low at 1.2%, which demonstrates a high level 

of precision and reliability in distinguishing this level of 

acrophobia. Similarly, for the Moderate Acrophobia category, 

the TPR was also high at 95.1%, with an FNR of 4.9%. These 

values indicate that the model effectively identifies cases in this 

category, though a slight reduction in misclassification would 

further strengthen its performance. 

 

 
Fig. 7.  Confusion matrix TPR dan FNR. 

 

In Fig. 8, the confusion matrix illustrates the performance of 

the model through the Positive Predictive Value (PPV) and 

False Discovery Rate (FDR) across different categories related 

to acrophobia levels: Not, Low, Moderate, Active, and Strongly 

Acrophobic. The PPV, which indicates the proportion of 

correctly identified positives, shows a range from 75% to 100% 

across the categories. This variation in PPV reflects the model's 

effectiveness in distinguishing between different levels of 

acrophobia. Specifically, the Not acrophobic category achieved 

a PPV of 75%, indicating a moderate level of accuracy in 

identifying individuals with no acrophobia. The Low and 

Moderate categories show significantly higher PPV values of 

94.2% and 90.7%, respectively, highlighting strong model 

performance in detecting these levels of acrophobia.  

 

 
Fig.  8.  Confusion matrix PPV dan FDR. 

 

The Active acrophobia category had a perfect PPV of 100%, 

demonstrating the model’s complete accuracy in identifying 

this group without any false positives. However, for the 

Strongly Acrophobic category, the PPV dropped slightly to 

83.3%, indicating some degree of misclassification, though still 

maintaining a relatively high accuracy. The PPV for the Other 

category is notably lower at 0.9%, signaling poor classification 

performance in this group. This could suggest that the model 

struggles to differentiate the Other category from the defined 

acrophobia levels, likely due to overlapping or ambiguous 

characteristics within this category. Overall, the PPV results 

suggest that the model is highly effective at classifying common 

acrophobia categories, with minor misclassifications in the 

more extreme cases (Strongly Acrophobic) and significant 

difficulties with the Other category. This suggests that further 

refinement is needed, especially to handle outliers or less 

clearly defined categories. 

Parallel coordinate plots are useful for analyzing multivariate 

numerical data. Comparison between samples or observations 

on various numerical variables is made easier with this graph. 

Different axes denote each feature or variable, and each axis is 

parallel to each other and at the same distance. This method 

allows researchers to easily find patterns or relationships 

between numerical variables. This allows them to do this 

without projecting data to a lower dimension. By using parallel 

coordinate plots, data complexity can be deciphered and 

understanding of patterns that may be hidden in variable 

relationships can be improved.  

Fig. 9 is the parallel coordinate plot of prediction model: 

Solid line (−−) and Dash line (---) are correct and incorrect 

predictions, respectively. The lines in the figure represent the 

class for each variable, where Green corresponds to the 

Strongly Acrophobic class, Purple represents Not Acrophobic, 

Orange indicates Moderate Acrophobia, Red signifies Low 

Acrophobia, and Blue denotes Active Acrophobia. The solid 

lines indicate that the model accurately predicted the output for 

the selected features, while the dashed lines highlight less 

accurate predictions. Overall, the results in Fig. 9 demonstrate 

that only a few predictions were classified inaccurately, which 

aligns with the model's high accuracy of 94%. Notably, the 

majority of prediction errors were observed in the Moderate 

Acrophobia class. This could suggest that the features for this 

class overlap or are less distinct compared to other classes, 

making it more challenging for the model to differentiate. 

However, given the overall accuracy, the model still performs 

well across most categories, with minimal misclassification. 

A line diagram connecting the subject's reference values can 

effectively describe parallel algorithms in the following data 

representations. Furthermore, by using standard deviations 

displayed on parallel charts, clear and prominent visual 

representations are created. This makes the interpretation of 

results more intuitive. K-Nearest Neighbors (KNN), a versatile 

machine learning method for both classification and regression, 

is particularly effective for monitoring drones and analyzing the 

data they generate. By using a distance-based approach, KNN 

classifies observations based on the majority of their nearest 

neighbors, enabling more accurate monitoring and analysis. 

This method enhances the understanding of patterns and 

relationships within the data, providing deeper insights. 
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Fig. 9. Parallel Coordinate Plot of prediction model: Solid line (−−) and Dash 

line (---) are correct and incorrect predictions, respectively. (Lines: Green: 

Strongly, Purple is Not, Orange is Moderate, Red is Low, Blue is Active) 

IV. CONCLUSION 

The study examines the emotional categorization of pilots 

based on altitude-related acrophobia using EEG signals and the 

K-Nearest Neighbor (KNN) algorithm. Sixteen pilots 

participated in flight simulations where brainwave patterns—

specifically alpha, beta 1, beta 2, and gamma waves—were 

recorded and analyzed. After a thorough process of EEG data 

filtration and feature extraction, the KNN model achieved an 

impressive accuracy of 94.08%. From a total of 304 data points, 

the emotional responses were classified into four categories: 

strong acrophobia, active acrophobia, low acrophobia, and no 

acrophobia. The results highlight the effectiveness of this 

method in detecting fear responses through EEG signals with a 

high degree of precision. 
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