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Abstract—Flight safety is of paramount importance, and
preventive measures are essential to maintain stable airline
performance while minimizing accidents linked to pilots'
emotional responses. This study investigates pilots' fear reactions
during flight simulations using electroencephalography (EEG)
signals and the K-Nearest Neighbors (KNN) algorithm, chosen for
its simplicity and high classification accuracy of 94.08%. By
analyzing brainwave patterns, this study highlights the connection
between pilots' mental states, including attention levels at varying
altitudes, and overall flight performance. The findings contribute
to the aviation industry's efforts to enhance safety by
understanding and mitigating emotional factors that could affect
pilot decision-making.
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I. INTRODUCTION

MODERN DEVELOPMENT presents several special challenges

for pilots, one of which is altitude conditions that can cause
various psychological reactions [1][2][3][4]. Detection and
understanding of pilot altitude emotions is essential for
improving flight systems because success in responding to and
managing altitude emotions is critical to flight safety and
performance [5][6]. The emotion of height, also known as
aviophobia, can not only affect the overall performance of the
pilot, but it can also cause extreme mental stress and tension
[71[8]. In order to create effective intervention strategies and
improve overall flight safety, it is essential to understand the
emotional state of pilots [9][10].

Electroencephalogram (EEG) is one of the tests that can
measure the electrical activity of the brain. In these situations,
EEG can help understand how brain activity occurs during
altitude [11]. EEG works to record and see the electrical
amplitude of the brain with the placement of several electrodes
on the human scalp. This understanding contributed to the
creation of a useful high-altitude emotion detection system,
which can track the emotional state of the pilo directly during
flight [4][12].

In the medical world, the role of EEG has been widely used
to diagnose disorders in the brain because EEG can read 5 brain

A. Turnip and M. Taufik, Department of Electrical Engineering, Universitas

Padjadjaran,  Sumedang, Indonesia  (e-mails:  turnip@unpad.ac.id,
m.taufik@unpad.ac.id).

D. E. Kusumandari, National Research and Innovation Agency of Indonesia
(BRIN), Indonesia (e-mail: dwie002@brin.go.id)

George Michael T., Precision Manufacturing System, Pusan National
University, Republic of Korea (e-mail: georgetampubolon@pusan.ac.kr).

waves consisting of delta, theta, alpha, beta, and gamma [13].
The active conditions for each type of wave are different. When
a person falls asleep soundly and without dreams, delta waves
are active with a frequency of 0.5-4 Hz and an amplitude of
100-200 mV [14][15]. Theta waves are also active when very
tired and close to sleep, with a frequency of 4-8 Hz and an
amplitude of 5-10 mV [6][16][17]. When a person is calm or
daydreaming, alpha waves are active with a frequency of 8-12
Hz and an amplitude of 20-80 mV. When a person is in a
normal or fully conscious state, beta waves travel, with a
frequency of 12—25 Hz and an amplitude of 1-5 mV. The last
is Traveling gamma waves, with a frequency of 25-60 Hz and
an amplitude of 0.5-2 mV [18][19]. There are other studies that
aim to detect fatigue in car drivers and aircraft pilots using non-
invasive methods [5]. However, the results of this test do not
provide a quantitative synthesis of the findings, which may
limit the robustness of the conclusions drawn [5][17].

This study aims to detect the emotional response of fear of
heights to pilots with EEG signals, focusing on the use of the
K-Nearest Neighbors (KNN) method as a classification tool.
KNN was chosen for its simple nature, ability to handle high-
dimensional datasets, and ability to provide good results in the
context of classification. Through this research, it is hoped that
a deeper understanding of the relationship between EEG signals
and altitude emotions will be obtained, as well as the possible
application of this technology in improving pilot safety and
well-being. This research was carried out when the pilot was in
a maneuvering position using 16 subjects that would be
classified as fear levels.

Il. METHODOLOGY

This research was conducted in December 2022 and was
conducted at Universitas Padjadjaran. In addition, we
collaborated with the Indonesian Aviation Academy
Banyuwangi to collect data for this study. The number of
samples taken was 16 male and female samples. Subject data
consisted of experienced and inexperienced individuals in flight
at random. Before data collection, everyone involved in this
study gave an explanation of the research objectives, processes,
and procedures to be carried out.

During the study, to record the brain signals of the
subjects, an EEG Mitsar 202 was used, and an electro cap was
attached to the subject as well as an electro gel was applied to
each EEG sensor to reduce the sound in the scalp in a relaxed
state with the eyes open (Fig. 1a) [16]. There are 19 electrode
channel channels, namely Fpl, Fp2, F7, F3, Fz, F4, F8, T3, C3,

ISSN: 1942-9703 / CC BY-NC-ND @



12 INTERNETWORKING INDONESIA JOURNAL

@-@-@-@@
8000

(c)
Fig. 1. (a)Electro-cap is attached to the subject (b) Subject in the maneuvering
position (c) Placement of the electrode position on the human brain

Then after that the EEG signal data will be recorded and
displayed using the WIinEEG Visible Software in Fig. 2, which
will then use a bandpass filter to display the recording results,
reduce noise and eliminate unwanted frequencies. The low
cutoff value is 0.3 (0.53 Hz) and the high cutoff value is 50 Hz.

The data recorded and processed with WIinEEG are in the
form of Delta, Theta, Alpha, Beta 1, Beta 2, and Gamma. After
the data is processed with WInEEG, the phi V data unit is
entered into Microsoft Excel. Thus, MATLAB software can
process data with the classification learner feature, which then
enters data from Microsoft Excel. Next, decide what method to
use; In this study, the K-Nearest Neighbors method was used.

The K-Nearest Neighbors (KNN) method can be used to
identify the emotional response of the pilot's altitude through
the analysis of Electroencephalogram (EEG) signals. In this
case, KNN functions as a classification algorithm that uses the
principle that similar data tend to be in the same group. Using
EEG signals, the KNN can find complex patterns that can
indicate the emotional response of altitude in the pilot. EEG
signals record the brain's electrical activity and changes in the
frequency spectrum under various conditions, such as altitude.
KNN works by measuring the distance between the data points
to be predicted and the data points that are already in the
exercise dataset. Therefore, KNN can account for patterns of
brain activity in altitude situations similar to those that have
been recorded in training data when analyzing EEG signals.
The K value in KNN plays an important role, where the K value
determines the number of nearest neighbors that will be used to
predict the data class. In the detection of altitude emotions in
pilots, choosing the right K value is essential to reduce noise
and make more accurate predictions. This study seeks to
simplify the difficulty of brain analysis during altitude
situations by using KNN on EEG signals. A deeper
understanding of EEG signal patterns allows this method to
monitor and identify altitude emotions in pilots, which allows
for the development of responsive and adaptive decision
support systems in the world of aviation.
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Geometric distance calculations, Hamming, Manhattan, and
Minkowski are some of the types of distance calculations that
can be used in KNN, depending on the nature of the data and
the problem at hand. Choosing the right distance metric is
crucial because it can affect the final outcome of the KNN
algorithm. Calculating geometric distances can be done using
the following equation:

Dxy = \/Z?=1 (x1 — y1)? 1)

Hamming distance calculation can be done using the
following equation:

1yn
n1=1

Dxy = lo¢; — il )

Manhattan distance calculations can be done using the
following equation:

Dxy =Xi-1 I —yil 3)

Minkowski's distance calculation can be done using the
following equation:

1

Dy = Ty I~y 1) @
With the following information: Proximity distance (D) is a
concept that measures the level of similarity between two cases,
namely data training (x) and data testing (y). n reflects the
number of individual attributes between 1 to n. The similarity
function f describes the similarity of individual attributes (i)
between cases X and Y, with i ranging from 1 to n.
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Recording using EEG
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Fig. 2. Scheme of EEG Data Processing

I1l. RESULTS AND DISCUSSION

The data that has been recorded has noise, a filtering process
with a Band Pass Filter (BPF) is required with a range of 0.5 Hz
to 50 Hz. Due to unnecessary signal cutting, the data stored is
only necessary. The results of signal recording before and after
the filtering process are compared in Fig. 3. Brain signals were
obtained for three different conditions: the take-off condition,
the maneuvering condition, and the landing condition.
Therefore, the data is only taken from 85 - 155 seconds from
the maneuver condition.

Once the EEG signal filtering is complete, the next stage is
data extraction. At this stage, amplitude is used to capture data
from three types of brainwave signals: alpha, beta 1 and beta 2.
The EEG spectroscopy method is used to obtain this amplitude.
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(b)
Fig. 3. Signal recording results (a) before (b) after cutting

Time intervals using fragments, using only EEG channels,
epoch number 0, epoch length 1 second, overlapping none, time
window Hanning, 3rd order polynomial trends, focus on slow
waves with a signal power of 200, and a frequency range of 0.5
to 50 Hz. data without additional processing, and data
alignment of 5 epochs. Fig.4. shows the data extracted in the
form of brain mapping, graphs, and Table 1 shows the
amplitude values of each electrode point. Brain Mapping shows
where the electrode points are located and the active areas of
the brain. The whiter the color, the more active the signal in the
area.

(b)
Fig. 4. The amplitude of the waves that have been extracted into the form of
Brain Mapping (a) Inexperienced pilots (b) Experienced pilots

In Fig 5. read the condition of the subject when he is
conscious, namely when flying. Then the data will be displayed
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in the form of a graph which shows the amplitude value of each

electrode point.

s

Fig. 5 The amplitude of the waves that have been extracted into the form of a
graph (a) inexperienced pilots (b) experienced pilots

TABLE |
DATA RESULTS THAT HAVE BEEN EXTRACTED

Subject Alpha Betha 1 Betha2 [ Gamma

Subject 2.243 1.586 1.734 1.664
Subject 2 2.542 1.944 2.450 2.437
Subject 3 2.040 1.373 1.334 1.563
Subject 4 1.454 0 1.065 1.078
Subject 5 3.083 1.633 1.864 1.605
Subject 6 2.136 1.230 1.430 1.257
Subject 7 2.080 1.496 1.610 1.479
Subject 8 1.933 1.370 1.506 1.497
Subject 9 1.551 0 0 0
Subject 10 1.914 1.362 1.399 1.522
Subject 11 | 2.990 1.747 1.729 1.541
Subject 12 0 0 0 0
Subject 13 1.961 1.379 1.465 1.342
Subject 14 | 2.355 1.631 1.695 1.649
Subject 15 | 2.355 1.631 1.695 1.649
Subject16 | 2.611 1.827 1.838 3.921
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There are 304 data from 16 subjects that will be classified into
5 categories and then filter, normalize and extract data from the
16 subjects and determine the maximum, minimum, range, and
interval values in Table 2.

TABLE I
RESULTS OF MAXIMUM, MINIMUM, RANGE AND INTERVAL VALUES
Maximum Value 30.295
Minimum Values 0
Range 30.295
Interval 6.059

To determine the interval in the data classification, the
maximum and minimum values that have been obtained are
used. After that the data is normalized, the amplitude comes
from the waves (Alpha, beta 1, beta 2, gamma) to get the total
at each electrode location. The next step is grouped into 5
categories, namely strongly Acrophobia, Active Acrophobia,
Moderate  Acrophobia, Low Acrophobia, and None
Acrophobia. The results of the classification based on intervals
are as follows: In the Acrophobia classification, the amplitude
interval (uV) is used as a parameter. There are five categories
with different amplitude ranges, namely Strongly Acrophobia
(24,236 - 30,295 uV), Active Acrophobia (18,277 - 24,236 uV),
Moderate Acrophobia (12,118 - 18,177 uV), Low Acrophobia
(6059 - 12,118 uV), and No Acrophobia (0 - 6059 uV).

Furthermore, the data is used for classification learning in
Matlab. To determine the level of accuracy, the KNN technique
is used in this classification process. In this experiment, the
authors conducted data training for each type of KNN method,
which resulted in varying levels of accuracy in Table 3. The
Weighted method is the most accurate and fast of all KKN
models, with an accuracy of 94.08% and a prediction speed of
1800 observations per second.

TABLE 111
TRAINING RESULT METODE KNN

Model type Accurac | total Prediction | Training
\ cost Alert(obs/s Time
ec) (sec)
Fine KNN 93.09% 21 1800 14.667
Medium KNN 89.80% 31 1700 11.083
Coarse KNN 80.92% 58 1600 10.646
Cosine KNN 81.25% 57 1700 9.329
Cubic KNN 88.16% 36 1700 14.737
Weighted KNN 94.08% 18 1800 14.667

The researcher uses the KNN method to process normalized
extraction data, presenting it through various forms of data
representation. The results of the test through the simulation
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show that the Weighted KNN method has the highest level of
accuracy compared to the other five methods, reaching 94.08%.
This method uses a variety of plots, such as dispersion plots,
confusion matrix plots, and parallel coordinate plots. The high-
test results of the Weighted KNN plot show that this method is
effective in processing and analyzing data correctly.

In a scatter plot, the dots show the data for two numerical
variables. In the context of model predictions, a scatter plot is
used to visualize the model's performance by plotting predicted
values against actual values. Each point on the plot represents a
prediction made by the model. Dots () indicate correct
predictions, while crosses (X) represent incorrect ones. As
shown in Fig. 6, only a few incorrect predictions were made.
The confusion matrix, which consists of four combinations of
actual and predicted values, can also be used to assess the
performance of the model. In combination this includes the
Original Positive Value (TPR), which is the true positive
proportion of all predicted positive samples; False Negative
Value (FNR), which is the proportion of false negatives;
Positive Prediction Value (PPV), which indicates the accuracy
between the prediction and the actual classification; and False
Discovery Value (FDR). The confusion matrix shows how well
the model can correctly classify the data and find positive and
negative cases precisely. We can evaluate the strengths and
weaknesses of the model in predicting and classifying data by
examining the combination of TPR, FNR, PPV, and FDR
values.

Predictions: model 26

Betal

Fig. 6. Scatter Plot: dot (e) is correct and cross (X) is incorrect predictions.

In this analysis, the False Negative Rate (FNR) for the
confusion matrix in Fig. 7 stands out, with the highest value
being 57.1%. This indicates that a significant portion of true
positives were misclassified as negatives, highlighting a key
area for improvement in the model's performance. Looking into
the individual categories, the True Positive Rate (TPR) for the
Strongly Acrophobic category was relatively high at 83.3%,
meaning that the model was able to correctly classify the
majority of instances in this category. However, this also
suggests that there is room for improvement, given the elevated
FNR of 16.7%. For the Acrophobia Note category, the model
performed exceptionally well, achieving a TPR of 98.8%,
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signifying that nearly all instances in this category were
accurately identified. Additionally, the FNR for this category
was remarkably low at 1.2%, which demonstrates a high level
of precision and reliability in distinguishing this level of
acrophobia. Similarly, for the Moderate Acrophobia category,
the TPR was also high at 95.1%, with an FNR of 4.9%. These
values indicate that the model effectively identifies cases in this
category, though a slight reduction in misclassification would
further strengthen its performance.

Model 2.6

Active Akrofobia | 4219% 429% 143% 429% 571%

Low Akrofobia 94 58% gE 58%
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Fig. 7. Confusion matrix TPR dan FNR.

In Fig. 8, the confusion matrix illustrates the performance of
the model through the Positive Predictive Value (PPV) and
False Discovery Rate (FDR) across different categories related
to acrophobia levels: Not, Low, Moderate, Active, and Strongly
Acrophobic. The PPV, which indicates the proportion of
correctly identified positives, shows a range from 75% to 100%
across the categories. This variation in PPV reflects the model's
effectiveness in distinguishing between different levels of
acrophobia. Specifically, the Not acrophobic category achieved
a PPV of 75%, indicating a moderate level of accuracy in
identifying individuals with no acrophobia. The Low and
Moderate categories show significantly higher PPV values of
94.2% and 90.7%, respectively, highlighting strong model
performance in detecting these levels of acrophobia.

Model 2.6
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Fig. 8. Confusion matrix PPV dan FDR.

The Active acrophobia category had a perfect PPV of 100%,
demonstrating the model’s complete accuracy in identifying
this group without any false positives. However, for the
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Strongly Acrophobic category, the PPV dropped slightly to
83.3%, indicating some degree of misclassification, though still
maintaining a relatively high accuracy. The PPV for the Other
category is notably lower at 0.9%, signaling poor classification
performance in this group. This could suggest that the model
struggles to differentiate the Other category from the defined
acrophobia levels, likely due to overlapping or ambiguous
characteristics within this category. Overall, the PPV results
suggest that the model is highly effective at classifying common
acrophobia categories, with minor misclassifications in the
more extreme cases (Strongly Acrophobic) and significant
difficulties with the Other category. This suggests that further
refinement is needed, especially to handle outliers or less
clearly defined categories.

Parallel coordinate plots are useful for analyzing multivariate
numerical data. Comparison between samples or observations
on various numerical variables is made easier with this graph.
Different axes denote each feature or variable, and each axis is
parallel to each other and at the same distance. This method
allows researchers to easily find patterns or relationships
between numerical variables. This allows them to do this
without projecting data to a lower dimension. By using parallel
coordinate plots, data complexity can be deciphered and
understanding of patterns that may be hidden in variable
relationships can be improved.

Fig. 9 is the parallel coordinate plot of prediction model:
Solid line (—) and Dash line (---) are correct and incorrect
predictions, respectively. The lines in the figure represent the
class for each variable, where Green corresponds to the
Strongly Acrophobic class, Purple represents Not Acrophobic,
Orange indicates Moderate Acrophobia, Red signifies Low
Acrophobia, and Blue denotes Active Acrophobia. The solid
lines indicate that the model accurately predicted the output for
the selected features, while the dashed lines highlight less
accurate predictions. Overall, the results in Fig. 9 demonstrate
that only a few predictions were classified inaccurately, which
aligns with the model's high accuracy of 94%. Notably, the
majority of prediction errors were observed in the Moderate
Acrophobia class. This could suggest that the features for this
class overlap or are less distinct compared to other classes,
making it more challenging for the model to differentiate.
However, given the overall accuracy, the model still performs
well across most categories, with minimal misclassification.

A line diagram connecting the subject's reference values can
effectively describe parallel algorithms in the following data
representations. Furthermore, by using standard deviations
displayed on parallel charts, clear and prominent visual
representations are created. This makes the interpretation of
results more intuitive. K-Nearest Neighbors (KNN), a versatile
machine learning method for both classification and regression,
is particularly effective for monitoring drones and analyzing the
data they generate. By using a distance-based approach, KNN
classifies observations based on the majority of their nearest
neighbors, enabling more accurate monitoring and analysis.
This method enhances the understanding of patterns and
relationships within the data, providing deeper insights.
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Predictions: model 2.6
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Fig. 9. Parallel Coordinate Plot of prediction model: Solid line (—) and Dash
line (---) are correct and incorrect predictions, respectively. (Lines: Green:
Strongly, Purple is Not, Orange is Moderate, Red is Low, Blue is Active)

IV. CONCLUSION

The study examines the emotional categorization of pilots
based on altitude-related acrophobia using EEG signals and the
K-Nearest Neighbor (KNN) algorithm. Sixteen pilots
participated in flight simulations where brainwave patterns—
specifically alpha, beta 1, beta 2, and gamma waves—were
recorded and analyzed. After a thorough process of EEG data
filtration and feature extraction, the KNN model achieved an
impressive accuracy of 94.08%. From a total of 304 data points,
the emotional responses were classified into four categories:
strong acrophobia, active acrophobia, low acrophobia, and no
acrophobia. The results highlight the effectiveness of this
method in detecting fear responses through EEG signals with a
high degree of precision.
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