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Design of Localization System Based on
Particle Filter Algorithm for Mobile Soccer
Robot Using Encoders, Compass, and
Omnidirectional Vision Sensor

Ahmad Wahrudin, Augie Widyotriatmo, and Endra Joelianto

Abstract— Self-localization is the basis to navigate robot or
vehicle in dynamic environment such as for motion planning and
obstacles avoidance. Self-localization can be divided into two
categories: Local Localization-System (LLS) and Global
Localization-System (GLS). Local Localization-System uses
inertial sensors such as encoders which leads inevitably to the
unbounded accumulation of errors. Whereas Global Localization-
System utilizes information based on absolute sensors so that it has
a long sample time. In the Middle Size Soccer Robots, the sensors
must be mounted on the robot so that it is difficult to obtain a
global position directly. The particle filter algorithm is designed as
a technique for combining both inertial and absolute sensor data
to overcome the problems of Local Localization-System and
Global Localization-System on mobile soccer robot. In this paper,
three encoders are used to provide odometry motion model, an
omnidirectional vision sensor is used to give weight to the particles,
and ambiguity problems is overcome by using an electronic
compass. The result of this test show that localization by using
Particle Filter Algorithm gives better performance than Local
Localization-System and can overcome the Global Localization-
Problems.

Index Terms—GLS, LLS, Particle Filter, Self-Localization.

I. INTRODUCTION

IDDLE Size League (MSL) is one of the branches in

RoboCup which competes teams of five fully
autonomous wheeled robots to play soccer using FIFA’s sized
soccer ball. All the robots must truly represent human players,
so they must be able to perceive the environment through
sensors that must be installed on-board. The research is focused
on autonomous multi-robot control, mechatronic, multi-agent
cooperation, robot perception and navigation [1][2].
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Self-localization is one of the most important issues in
autonomous mobile robots, especially for the robots in the MSL
competition that has high dynamic environment [3]. Self-
localization can be divided into two categories: Local
Localization-System and Global Localization-System. Local
Localization-System uses inertial sensors such as encoders
which leads inevitably to the unbounded accumulation of errors
[4] [5]. Whereas Global Localization-System utilizes
information based on absolute sensors such as Global
Positioning System (GPS) and active beacons so that it has
more accurate measurement results compared to the Local
Localization-System method but requires a longer
computational time [2].

This paper presents the design and implementation of particle
filter algorithm include how to characterize the noise source,
that is critical to obtain better performance of MSL Soccer
Robot self-localization system. This article shows encoder
modification to reduce slippage error and improve the sensor
reading accuracy. Information generated from encoders is used
as input to the motion model while compass and
omnidirectional vision sensor is used as input to the
measurement model in the particle filter algorithm.

1. MoDIFIED ODOMETRY SENSOR

Odometry is the most commonly used as Local Localization-
system. Odometry is obtained by calculating the incremental
rotation of the wheel connected to the encoder according to its
kinematics configuration. Because it only uses wheel rotation,
there will always be an increase in reading errors continuously.
This error is divided into 2 categories, systemic and non-
systemic errors. Systematic errors are errors caused by
imperfections in robot mechanics, such as differences in wheel
diameter and unequal wheel distance to the center of the robot's
geometry. Non-systematic errors are caused by wheel-floor
interactions such as slips, bumps, and cracks [6].

In Robocup MSL, the main cause of non-systematic errors is
the slip that occurs when changes in speed and direction of the
robot motion [7]. A modification has been made to reduce this
error by separating the encoder from the main wheel, then
making it flexible by using a spring to ensure that the encoder
wheel will always contact the ground as shown in Figure 1. This
modification significantly reduce the accumulated errors of the
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system.

Fig. 1. Design (left) and Implementation (right) of Modified Odometry
Sensor

I1l. RoBOT KINEMATICS
The basic modelling for our robot is shown in Fig. 2 which
shows our robot model for three encoder wheels configuration
with following notation [8] [6]:
e X,Y,0: relative position of the robot in meter (X, y)and

angle in radian that defines the robot’s heading(ﬁ)

according to the field coordinate;

e L : Distance between wheels and center of robot’s
geometry in meter;

* V,,V,,V,: Encoder wheels linear velocity in m/s;

e ,m,, o, Encoder wheels angular velocity in rad/s;
e V,,V, :Robot linear velocity in m/s;

e o :Robot angular velocity in rad/s
Therefore, the linear velocity vector of the encoder wheel can
be represented as a matrix function of the robot’s linear and
angular velocity as shown (1)

J3 1
WOl | 2 Mo
vLO[== 0 1 Lfv.® 1)
0| | Y8 L leo

Linear and angular velocities of the robot motion can be
written as shown in (2) by calculating inverse matrix in (1).

Fig. 2. Three-wheeled robot configuration model
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By integrating (2), we can calculate current position and
heading of the robot as shown in (3).

j( v,(t)— \/,v(t)jdt
= j ( v, (1) +< v(t) v(t)]dt ®)

0= J.F(ivl(t) +ivz (t) +iv3 (t)Jdt

By transforming the relative positions from (2), we can
estimate the global position of the robot according to equation

4.
{xnﬂ {xpm} {cos(a) —sin(e)}{x}

= + 4
Yiew Yo | [ SIN(O)  cos(O) ]|y

IV. PARTICLE FILTER

Particle filter, also known as a Sequential Monte Carlo
(SMC) method is an implementation of Bayes Filter which uses
a Monte Carlo approach to represent the probability of a
stochastic system at the present time in a Markov process. Each
particle represents one of the hypotheses of the system state
parameter. Each particle undergoes evolution and weighting
based on a motion model and its measurement model with a
certain error distribution [9].

The input of the particle filter algorithm is the set of particle

Tn = { 24 B ;(H[M]} , the latest input control u, , and
the latest measurement z, [9]. The particle filter algorithm is
shown in Fig. 3.

Algorithm Particle filter(y, ;, u,, #,):
Fe= =0
form=1toM do
sample x - plxy |y, xl
w‘[m] = o(z, |X t]J
Bo= qed (x}'"'.w,'*"'}
endfor
form=1toMdo
draw i with probability o w,['
add ):r“] to y,
endfor
return y,

J

Fig. 3. Particle Filter Algorithm

The particle filter algorithm cosists of several main process:
e Predicting process: predict new distributions for particles
according to the robot motion model P(x, |u,,%_;);
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o Updating process: update the particle weights V\4[m] using
information from sensor model P(z, | x )and then

normalize the results: the localization result can be
obtained by calculating the weighted mean over all
particles.

e Resampling process: acquire a new set of y, according

to particle weights: the probability for each particles ™
to be resampled proportional to its weight w™ .

A. Odometry Motion Model
The odometry motion model algorithm is used as a source of
motion model in prediction step. The input of this algorithm is
previous state value y, ,, and the input of the movement
is the lateral translation

ut = (é‘trans ! 5rot1’ 5rot2) [9] Where é‘trans
and o

of the robot movement while s, ot

ot are the rotational
movements taken by the robot shown by Fig. 4.

Fig. 4. Odometry Model llustration in Robot Linear Motion

In the sample odometry motion model algorithm for
omnidirectional wheel that has been modified from common
odometry motion model [9] as shown in Fig. 5 there exist 5
parameters that represent noise parameter in the robot motion
model. These parameter are listed below:

e q;: Specifies the expected noise in odometry's rotation
estimate from the rotational component of the robot's
motion;

e a,: Specifies the expected noise in odometry's rotation
estimate from translational component of the robot's
motion;

e a5 Specifies the expected noise in odometry's
translation estimate from the translational component of
the robot's motion;

e a, : Specifies the expected noise in odometry's
translation estimate from the rotational component of
the robot's motion;

e« : Translation-related noise parameter that caused by
omnidirectional robot characteristic.

Algorithm sample_motion_model odometry(u,, x;_;):
Sron = atan2(y' — y,x' — x)— 0
Sprans = (E— X2+ (7 - 72

Srorz= 0" — a- Sror1

Orot1 = Grot1 — sample(ay| 8,001 | + @26trans)

é’:lrmw = Strans — SaMPle(asSirans + @480 | + 18r0r2]) + a58trans)
Orotz = Ororz — SaMPle(as|8,oe2| + @28trans)

+ Birans c0s(0 + 801)

x
y+ d‘trﬂns(g + Bror1)
6 + 6r'o:1 + 6?'Or2

*
'
a'

retwrn x, = (x',y', 807

Fig. 5. Odometry Motion Model Algorithm
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B. Measurement Model

The measurement model P(z, | x,)in the particle filter
algorithm is obtained by processing the information from the
omnidirectional vision sensor that captures 360° image as
shown in Fig. 6. The value of this measurement model is used
as a weghting of each particle.

Fig. 6. Panoramic Image Captured by Omni-Vision

In the RoboCup MSL only the white lines of the field can be
utilized as a measurement information source for localization
process. So the radial scan lines method is applied to the image
that has been calibrated for detecting the lines as shown in Fig.
7.

If n line points are detected, the relative coordinates of the
detected line points to the robot for each particle can be defined

as f, :(oi[x],oi[”),withi=1,2,...,n .Theterm P(f, | %) isthe
probability of detecting f, when the robot is at 7, =(X. Y,.6,).

The position for each f, point in global coordinate can be

determined by performing a geometry transformation according
to (5).

Fig. 7. Calibrated Image (Left) and Radial Scan Lines (Right)

o _[ X ), [cosé —sing ) o o
| y, ) (sing,  cosg, ){o!”

P(f;|x:) can be determined by the probability of how f;
belongs to white mark lines corresponds to

P(11.2)exp 10250 ©

20°

Where ¢ is a constant. Therefore P( f. |l x ) can be calculated
by the deviation between the distribution of o; and the actual
position of these points on the field, and P( flx ) decreases as
the deviation increases to the closest line named as d(o;) . So

the deviation only depends on o;, and it can be precalculated
and stored in two-dimentional look-up table. Fig. 8 shows
d(o;) distribution on the field. From Fig. 8, the brightness
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represents the deviation scale, and the higher brightness depicts
the smaller deviation, so we can obviously investigate that how
the deviation change with varying o, on the field.

5 3 ¥

Fig. 8. The Distribution of d(o;) on The Field

Because f,,....., f, are detected independently, the sensor
measurement model of the system can be represented as (7).

P(zI%)=P(olx)=P(flx)-P(flx) @)

C. Resampling

The distribution of particles tends to degenerate where there
particles with low weight due to dispersion in the prediction
process. The selection / resampling stage is the key stage in the
particle filter algorithm. The particle selection process needs to
be carried out to keep the particle distribution in the correct
posteriori distribution area.

Low Variance Sampler algorithm also called the systematic
method is used for the resampling process. The algorithm is

shown in Fig. 9. The probability for each particle xI™ to be
resampled is proportional to its weight Wt[m]. This algorithm
converts the set of prior particles y, ,into a set of posterior
particles y, and then rearranges the weight of the m-th particle

. 1 . . .
to the same size w/™ = R with M is the number of particles .

The low-variance sampler is relatively easier to implement
and has a computational compIexityO(M ) which is faster than
the independent selection method with complexity
O(M logM ) [9]. After the selection process is finished, the
program will run recursively until the program is stopped.

Algorithm Low variance sampler(y, W,):
=90
r=rand(0; M~1)
c= wtm
i=1
form=1toMdo
U=r+(m—1)-M?
while U > ¢
i=i+1
c=c+ wtm
endwhile
add x?] to x;
endfor

return y;

Fig. 9. The Low Variance Sampler Algorithm
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V. EXPERIMENTAL RESULTS

A. Sensor Characteristics
Compass

We use CMPS12 as the absolute orientaion sensor. By giving
an angle of 360° into the compass for 100 times testing, we can
obtain the sensor characteristics as shown in the Fig. 10.

Compass Error Measurement

Frequancy
[ = N
(&) o (53] o

o

D O~ O T OHONTO AN®ST O~ ©

More

Measurement Errors (°)

Fig. 10. Compass Measurement Errors Distribution

Normality test is carried out by using the Kolmogorov —
Smirnov method at a significance level of 5%. From this test we
can concluded that empirical data came from normally
distributed populations as shown in Table I.

TABLE I.
COMPASS MEASUREMENT ERRORS CHARACTERISTIC

Parameter Value
Standar Deviation (¢)  2.31405°
Measurement Model 0 _.=6

cmps cmps

+0.N(0,1)

Encoders

To obtain the encoders sensor characteristic when used as an
odometry, the robot is moved in the translational direction
along one meter, two meter, and three meter for 100 times
testing. The measurements is recorded and plotted as shown in
Fig. 11. The measurement errors is calculated and sensor
characteristic value is obtained as indicated by Table II.

TABLE Il.

COMPASS MEASUREMENT ERRORS CHARACTERISTIC
Parameter 1 meter 2 meter 3 meter
Mean 0.02 0.06 0.05
Sttdev (YY) 0.012104 0.091311 0.173108

Distribution of Robot Translational Testing
0.040
0.020
0.000
0.000 0.500 1.500 2500 8.000 3.500
-0.020 X (m)

-0.040

y (m)

-0.060

-0.080

-0.100

-0.120

-0.140
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Fig. 11. Encoders Measurement Errors Distribution

B. Simulation Results

Odometry Motion Model

The simulation of odometry motion model is aimed to obtain
the best noise parameter value in odometry motion model
algorithm. By using 100 set of particle test that represent 100
times of testing and varying the values of the noise parameters
from 0.00 until 0.1 we can obtain a plot of data as shown in Fig.
12.

0.8 y3 =2.3849x0.5007
R?=0.9821

y2 =1.9797x0.5052
R2=0.981

sttdev (m)

y1 =1.3929x0.5024
R2=0.9811

0 0.02 0.04 0.06 0.08 0.1 0.12
noise parameter value

@sttdev_1_meter @sttdev_2_meter sttdev_3_meter

Fig. 12. Effect of Noise Parameters Against Distribution of Standard
Deviation Values

Optimal noise parameter values can be obtained by
performing optimization techniques on the objective function

Far =l Y1=Y1|+[y2-Y2|+]y3-Y3| (®)

where y1, y2, and y3 are measurement standar deviation from
simulation models, and Y1, Y2, and Y3 are measurement
standar deviation from the sensor realtime testing that we obtain
before. From the calculation, the optimal noise parameter value
is described as shown in Table I1I.

TABLE IlI.
NOISE PARAMETER OF ODOMETRY MODEL VALUE
Param a, ay as ay as
Value  0.0026 0.0026 0.0026 0.0026 0.0026

Particle Filter Simulation

Particle filter simulation is carried out to determine the
optimum particle filter parameters before being tested on the
robot. Particle filter algorithm is performed on the S-shaped
path as shown with a blue line in Fig. 13 (a) to simulate changes
in velocity and direction. The result of Particle filter simulation
is shown in Fig. 13(b). Red line defines the esimate posisiton
using filter particle, yellow line defines the estimate position
using odometry and yellow dot points describe the detected line
points with noise.

The performance of particle filters is determined by the
correctness of the estimated results and the computational time
required. Fig. 14(a) shows the plot of the particle filter
estimation errrors in the simulation varying by number of
particles. The RMS (Root Mean Square) error shows how fast
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the filter estimation reaches convergence to the actual position.
time

Fig. 14(b) shows the computational requaired

corresponding to he number of particles.

o 200 %00 600 800 1000

Fig. 13. Simulation of Localization Using Particle Filter (a) Path or Actual
Robot Motion (b) Simulation result

From Fig. 14, we can conclude that the greater the number of
particles used, the estimated error value will be smaller but
requires a longer computational time. From the data we can
derive equation model for the estimation error and the
computational time by (9) and (10).

err,. =933.11e"™" 9)
t =0.0001M —-0.0013

To obtain the optimal value of the particle number, the
optimization technique is carried out on the objective function
describe in (11).

(10)

Fu =lerr | +]|vt| (11)

ms

Where M is the particles number and v is the velocity given
to the robot in the simulation. From the experiment, the optimal
number of particles that can be used in the algorithm is M=645
particles.

From Fig. 15, we can conclude that the computational time
of the Particle Filter is dominated by weighting step. As we can
see in (7), the weighting step depends on the number of n line
points that being used in the algorithm. Graph of Particle Filter
performance to the change of the number of n line points is
shown in Fig. 16.
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1000
€ 800 :
O
5 600 .
= :
| err_rms = 5532.4n-1.359
g 40 "~ R2=0.833L
200 ‘
0 - N00000-0--0--0-0--- - r SSPY
0 100 200 300 400
n line points
(a)
Computation Time Graph
0.1 °
0.08 ._.""
Z 006 o
£ o W g
i o® t= 0.0001M - 0.0013
Y o’ Re=0,9991
i
0®
0 200 400 600 800
Particles number (M)
(b)

Fig. 14. Estimation Model on Varying Number of Particles (a) Position
Measurement error (b) Computation Time

Estimation Selection
Step Step

0% 1% Predicition

Step
! 11%
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88%

Fig. 15. Proportion of computation time for particle filter algorithms

From the figure above we can conclude that the greater the
number of line points, the estimated error value will be smaller
according to (12), but requires a longer computational time as
described by (13).

err,.. =5532.4n"%° (12)

t =0.0026n +0.0227 (13)
To obtain the optimal value of the line points number, the

optimization technique is carried out on the objective function

describe in (14).

F =lerr,  |+]|vt] (14)

ms
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From the experiment, the optimal number of line points that
can be used in the algorithm is n=60 line points.

Position Estimation Error
1000

800 %
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600 o
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computation_time
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n line points
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Fig. 16. Estimation Model on Varying Number Line Points (a) Position
Measurement error (b) Computational Time

From the simulation, by using parameter M=645 particles
and n=60 points, a comparison of localization error simulation
using odometry and filter particle is shown by Table IV.

TABLE IV.
ESTIMATION ERROR OF ROBOT LOCALIZATION
Method Test Type Position Orientation
Error (cm) Error

LLS RMS 64.488 0.119°
/Odometry Final 110.477 11.923°
Particle RMS 3.932 0.014°
Filter Final 2.941 0.39°

Realtime Implementation

Particle Filter algorithm has been implemented in the robot
by using the optimal parameters from simulation. The self-
localization using Particle filter starts with initializes the
particles position over the field uniformly, and uses data from
the compass as the orientation initialization to eliminate
ambiguity problem.

The experiement is carried out by moving the robot in the
field on free paths and with accelerated motion upto maximum
velocity 1.5m/s. The robot is driven through the control of the
GUI system from basestation.

Fig. 17(a) shows the initial position and Fig. 17(b) shows the
final position. Where the blue line shows historical position
estimation data using odometry, while the red line is a historical
position estimation data using Particle Filter, and green dots are
the particles.
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(b)
Fig.17. Realtime Implementation of self-Localization using Particle Filter (a)
initial position and (b) final position

From Fig. 17, it can be seen that the Particle Filter algorithm
can be implemented on realtime robot localization system. The
final robot position in the experiment shows that Particle Filter
has better robustness compared to odometry localization
system.

VI. CONCLUSION

The self-localization system using Particle filter can be
implemented on MSL mobile soccer robot by using encoders,
compass, and omnidirectional vision sensor. The algorithm has
optimal parameter M = 645 particles and n = 60 points.
Localization system using Particle Filter has better performance
than using LLS (odometry) method with estimated simulation
error value of Particle filter of 3 cm while on the LLS of 110
cm.
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