
Vol.11/No.2 (2019) INTERNETWORKING INDONESIA JOURNAL 57 

                    ISSN: 1942-9703 / CC BY-NC-ND   

 
Abstract— Self-localization is the basis to navigate robot or 

vehicle in dynamic environment such as for motion planning and 
obstacles avoidance. Self-localization can be divided into two 
categories: Local Localization-System (LLS) and Global 
Localization-System (GLS). Local Localization-System uses 
inertial sensors such as encoders which leads inevitably to the 
unbounded accumulation of errors. Whereas Global Localization-
System utilizes information based on absolute sensors so that it has 
a long sample time. In the Middle Size Soccer Robots, the sensors 
must be mounted on the robot so that it is difficult to obtain a 
global position directly. The particle filter algorithm is designed as 
a technique for combining both inertial and absolute sensor data 
to overcome the problems of Local Localization-System and 
Global Localization-System on mobile soccer robot. In this paper, 
three encoders are used to provide odometry motion model, an 
omnidirectional vision sensor is used to give weight to the particles, 
and ambiguity problems is overcome by using an electronic 
compass. The result of this test show that localization by using 
Particle Filter Algorithm gives better performance than Local 
Localization-System and can overcome the Global Localization-
Problems. 
 

Index Terms—GLS, LLS, Particle Filter, Self-Localization.  

I. INTRODUCTION 
IDDLE Size League (MSL) is one of the branches in 
RoboCup which competes teams of five fully 

autonomous wheeled robots to play soccer using FIFA’s sized 
soccer ball. All the robots must truly represent human players, 
so they must be able to perceive the environment through 
sensors that must be installed on-board. The research is focused 
on autonomous multi-robot control, mechatronic, multi-agent 
cooperation, robot perception and navigation [1][2]. 
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Self-localization is one of the most important issues in 
autonomous mobile robots, especially for the robots in the MSL 
competition that has high dynamic environment [3]. Self-
localization can be divided into two categories: Local 
Localization-System and Global Localization-System. Local 
Localization-System uses inertial sensors such as encoders 
which leads inevitably to the unbounded accumulation of errors 
[4] [5]. Whereas Global Localization-System utilizes 
information based on absolute sensors such as Global 
Positioning System (GPS) and active beacons so that it has 
more accurate measurement results compared to the Local 
Localization-System method but requires a longer 
computational time [2]. 

This paper presents the design and implementation of particle 
filter algorithm include how to characterize the noise source, 
that is critical to obtain better performance of MSL Soccer 
Robot self-localization system. This article shows encoder 
modification to reduce slippage error and improve the sensor 
reading accuracy. Information generated from encoders is used 
as input to the motion model while compass and 
omnidirectional vision sensor is used as input to the 
measurement model in the particle filter algorithm.   

II. MODIFIED ODOMETRY SENSOR 
Odometry is the most commonly used as Local Localization-

system. Odometry is obtained by calculating the incremental 
rotation of the wheel connected to the encoder according to its 
kinematics configuration. Because it only uses wheel rotation, 
there will always be an increase in reading errors continuously. 
This error is divided into 2 categories, systemic and non-
systemic errors. Systematic errors are errors caused by 
imperfections in robot mechanics, such as differences in wheel 
diameter and unequal wheel distance to the center of the robot's 
geometry. Non-systematic errors are caused by wheel-floor 
interactions such as slips, bumps, and cracks [6].  

In Robocup MSL, the main cause of non-systematic errors is 
the slip that occurs when changes in speed and direction of the 
robot motion [7]. A modification has been made to reduce this 
error by separating the encoder from the main wheel, then 
making it flexible by using a spring to ensure that the encoder 
wheel will always contact the ground as shown in Figure 1. This 
modification significantly reduce the accumulated errors of the 
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system.  

Fig. 1. Design (left) and Implementation (right) of  Modified Odometry 
Sensor 

III. ROBOT KINEMATICS 
The basic modelling for our robot is shown in Fig. 2 which 

shows our robot model for three encoder wheels configuration 
with following notation [8] [6]: 

• , ,x y θ : relative position of the robot in meter ( ),x y and 

angle in radian that defines the robot’s heading ( )θ  
according to the field coordinate; 

• L  : Distance between wheels and center of robot’s 
geometry in meter; 

• 1 2 3, ,v v v : Encoder wheels linear velocity in m/s;  
• 1 2 3, ,ω ω ω : Encoder wheels angular velocity in rad/s; 
• ,x yv v : Robot linear velocity in m/s; 
• ω : Robot angular velocity in rad/s 

Therefore, the linear velocity vector of the encoder wheel can 
be represented as a matrix function of the robot’s linear and 
angular velocity as shown (1) 
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Linear and angular velocities of the robot motion can be 
written as shown in (2) by calculating inverse matrix in (1). 

 
Fig. 2. Three-wheeled robot configuration model 
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By integrating (2), we can calculate current position and 
heading of the robot as shown in (3). 
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By transforming the relative positions from (2), we can 
estimate the global position of the robot according to equation 
4. 
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IV. PARTICLE FILTER 
Particle filter, also known as a Sequential Monte Carlo 

(SMC) method is an implementation of Bayes Filter which uses 
a Monte Carlo approach to represent the probability of a 
stochastic system at the present time in a Markov process. Each 
particle represents one of the hypotheses of the system state 
parameter. Each particle undergoes evolution and weighting 
based on a motion model and its measurement model with a 
certain error distribution [9].  

The input of the particle filter algorithm is the set of particle 
{ }1 1 1

[1] [2] [M]
1, ,....,t t t tχ χ χ χ− − − −=  , the latest input control tu , and 

the latest measurement tz [9]. The particle filter algorithm is 
shown in Fig. 3. 

Fig. 3. Particle Filter Algorithm 

The particle filter algorithm cosists of several main process: 
• Predicting process: predict new distributions for particles 

according to the robot motion model ( )1| ,t t tP x u x − ; 
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• Updating process: update the particle weights [ ]
t

mw using 
information from sensor model ( )|t tP z x and then 
normalize the results: the localization result can be 
obtained by calculating the weighted mean over all 
particles.  

• Resampling process: acquire a new set of tχ  according 
to particle weights: the probability for each particles [ ]m

tx  
to be resampled proportional to its weight [ ]m

tw . 

A. Odometry Motion Model 
The odometry motion model algorithm is used as a source of 

motion model in prediction step. The input of this algorithm is 
previous state value 1tχ − , and the input of the movement 

( )1 2, ,trans rot rot tu δ δ δ=   [9]. Where transδ is the lateral translation 

of the robot movement while 1rotδ and 2rotδ are the rotational 
movements taken by the robot shown by Fig. 4.  
 

 

 

 

 
Fig. 4. Odometry Model Ilustration in Robot Linear Motion 

In the sample odometry motion model algorithm for 
omnidirectional wheel that has been modified from common 
odometry motion model [9] as shown in Fig. 5 there exist 5 
parameters that represent noise parameter in the robot motion 
model. These parameter are listed below: 

• 𝛼𝛼1: Specifies the expected noise in odometry's rotation 
estimate from the rotational component of the robot's 
motion;  

• 𝛼𝛼2: Specifies the expected noise in odometry's rotation 
estimate from translational component of the robot's 
motion; 

• 𝛼𝛼3: Specifies the expected noise in odometry's 
translation estimate from the translational component of 
the robot's motion; 

• 𝛼𝛼4 : Specifies the expected noise in odometry's 
translation estimate from the rotational component of 
the robot's motion; 

• 𝛼𝛼5 : Translation-related noise parameter that caused by 
omnidirectional robot characteristic. 

Fig. 5. Odometry Motion Model Algorithm 

B. Measurement Model 
The measurement model )( |t tP z x in the particle filter 

algorithm is obtained by processing the information from the 
omnidirectional vision sensor that captures 360° image as 
shown in Fig. 6. The value of this measurement model is used 
as a weghting of each particle.  

Fig. 6. Panoramic Image Captured by Omni-Vision 

In the RoboCup MSL only the white lines of the field can be 
utilized as a measurement information source for localization 
process. So the radial scan lines method is applied to the image 
that has been calibrated for detecting the lines as shown in Fig. 
7.  

If 𝑛𝑛 line points are detected, the relative coordinates of the 
detected line points to the robot for each particle can be defined 
as ( )[ ] [ ],x y

i i if o o= , with 1,2,..., ni = . The term ( )|i tP f χ  is the 

probability of detecting if  when the robot is at ( ), ,t t t tx yχ θ= . 

The position for each if  point in global coordinate can be 
determined by performing a geometry transformation according 
to (5). 

Fig. 7. Calibrated Image (Left) and Radial Scan Lines (Right) 
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Where 𝜎𝜎 is a constant. Therefore ( )|i tP f χ can be calculated 
by the deviation between the distribution of 𝑜𝑜𝑖𝑖  and the actual 
position of these points on the field, and ( )|i tP f χ decreases as 
the deviation increases to the closest line named as )( id o . So 
the deviation only depends on 𝑜𝑜𝑖𝑖 , and it can be precalculated 
and stored in two-dimentional look-up table. Fig. 8 shows 

)( id o distribution on the field. From Fig. 8, the brightness 
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represents the deviation scale, and the higher brightness depicts 
the smaller deviation, so we can obviously investigate that how 
the deviation change with varying io on the field.  

Fig. 8. The Distribution of 𝑑𝑑(𝒐𝒐𝒊𝒊) on The Field 

Because 1,....., nf f are detected independently, the sensor 
measurement model of the system can be represented as (7). 

( ) ( ) ( ) ( )1| | | .... |t t t t tnP z x P o P f P fχ χ χ= =   (7) 

C. Resampling 
The distribution of particles tends to degenerate where there 

particles with low weight due to dispersion in the prediction 
process. The selection / resampling stage is the key stage in the 
particle filter algorithm. The particle selection process needs to 
be carried out to keep the particle distribution in the correct 
posteriori distribution area. 

Low Variance Sampler algorithm also called the systematic 
method is used for the resampling process.  The algorithm is 
shown in Fig. 9. The probability for each particle [ ]m

tx  to be 

resampled is proportional to its weight [ ]m
tw . This algorithm 

converts the set of prior particles 1tχ − into a set of posterior 
particles tχ and then rearranges the weight of the m-th particle 

to the same size [ ] 1
t

mw
M

=  , with M is the number of particles .  

The low-variance sampler is relatively easier to implement 
and has a computational complexity ( )O M  which is faster than 
the independent selection method with complexity
( )logO M M [9]. After the selection process is finished, the 

program will run recursively until the program is stopped.  

Fig. 9.  The Low Variance Sampler Algorithm 

V. EXPERIMENTAL RESULTS 
A. Sensor Characteristics 
Compass  

We use CMPS12 as the absolute orientaion sensor. By giving 
an angle of 360° into the compass for 100 times testing, we can 
obtain the sensor characteristics as shown in the Fig. 10.  

Fig. 10. Compass Measurement Errors Distribution 
 

Normality test is carried out by using the Kolmogorov – 
Smirnov method at a significance level of 5%. From this test we 
can concluded that empirical data came from normally 
distributed populations as shown in Table I. 

 
TABLE I.   

COMPASS MEASUREMENT ERRORS CHARACTERISTIC 

Encoders 
To obtain the encoders sensor characteristic when used as an 

odometry, the robot is moved in the translational direction 
along one meter, two meter, and three meter for 100 times 
testing. The measurements is recorded and plotted as shown in 
Fig. 11. The measurement errors is calculated and sensor 
characteristic value is obtained as indicated by Table II. 

TABLE II.   
COMPASS MEASUREMENT ERRORS CHARACTERISTIC 

 

Parameter Value  
Standar Deviation (𝜎𝜎) 2.31405° 
Measurement Model ( ). 0,1cmps cmps Nθ θ σ= +   

Parameter 1 meter 2 meter 3 meter 
Mean 0.02 0.06 0.05 
Sttdev (Y) 0.012104  0.091311 0.173108 
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Fig. 11. Encoders Measurement Errors Distribution 

B. Simulation Results 
Odometry Motion Model 

The simulation of odometry motion model is aimed to obtain 
the best noise parameter value in odometry motion model 
algorithm. By using 100 set of particle test that represent 100 
times of testing and varying the values of the noise parameters 
from 0.00 until 0.1 we can obtain a plot of data as shown in Fig. 
12.  

Fig. 12. Effect of Noise Parameters Against Distribution of Standard 
Deviation Values 

Optimal noise parameter values can be obtained by 
performing optimization techniques on the objective function 

| y1 Y1| | y 2 Y 2 | | y3 Y3 |errF = − + − + −   (8) 

where 𝑦𝑦1, 𝑦𝑦2, and 𝑦𝑦3 are measurement standar deviation from 
simulation models, and 𝑌𝑌1, 𝑌𝑌2, and 𝑌𝑌3 are measurement 
standar deviation from the sensor realtime testing that we obtain 
before. From the calculation, the optimal noise parameter value 
is described as shown in Table III.  

TABLE III.   
NOISE PARAMETER OF ODOMETRY MODEL VALUE 

Param 𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 𝛼𝛼4 𝛼𝛼5 

Value 0.0026 0.0026 0.0026 0.0026 0.0026 

 
Particle Filter Simulation 

 Particle filter simulation is carried out to determine the 
optimum particle filter parameters before being tested on the 
robot. Particle filter algorithm is performed on the S-shaped 
path as shown with a blue line in Fig. 13 (a) to simulate changes 
in velocity and direction. The result of Particle filter simulation 
is shown in Fig. 13(b). Red line defines the esimate posisiton 
using filter particle, yellow line defines the estimate position 
using odometry and yellow dot points describe the detected line 
points with noise.  

The performance of particle filters is determined by the 
correctness of the estimated results and the computational time 
required. Fig. 14(a) shows the plot of the particle filter 
estimation errrors in the simulation varying by number of 
particles. The RMS (Root Mean Square) error shows how fast 

the filter estimation reaches convergence to the actual position. 
Fig. 14(b) shows the computational time requaired 
corresponding to he number of particles.  

(a) 

(b) 
Fig. 13. Simulation of Localization Using Particle Filter (a) Path or Actual 
Robot Motion (b) Simulation result 

From Fig. 14, we can conclude that the greater the number of 
particles used, the estimated error value will be smaller but 
requires a longer computational time. From the data we can 
derive equation model for the estimation error and the 
computational time by (9) and (10). 

0.01933.11rms
Merr e=   (9)  

0.0001 0.0013t M= −   (10) 

To obtain the optimal value of the particle number, the 
optimization technique is carried out on the objective function 
describe in (11). 

| | | |M rmsF err vt= +   (11) 

Where M is the particles number and 𝑣𝑣 is the velocity given 
to the robot in the simulation. From the experiment, the optimal 
number of particles that can be used in the algorithm is 𝑴𝑴=645 
particles.  

From Fig. 15, we can conclude that the computational time 
of the Particle Filter is dominated by weighting step. As we can 
see in (7), the weighting step depends on the number of 𝑛𝑛 line 
points that being used in the algorithm. Graph of Particle Filter 
performance to the change of the number of 𝑛𝑛 line points is 
shown in Fig. 16.  
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(a) 
 

(b) 
Fig. 14. Estimation Model on Varying Number of Particles (a) Position 
Measurement error (b) Computation Time 

 
Fig. 15. Proportion of computation time for particle filter algorithms 

From the figure above we can conclude that the greater the 
number of line points, the estimated error value will be smaller 
according to (12), but requires a longer computational time as 
described by (13).  

1.3595532.4rmserr n−=   (12)  

0.0026 0.0227t n= +   (13) 

To obtain the optimal value of the line points number, the 
optimization technique is carried out on the objective function 
describe in (14). 

| | | |n rmsF err vt= +   (14) 

From the experiment, the optimal number of line points that 
can be used in the algorithm is 𝒏𝒏=60 line points. 

(a) 

(b) 
Fig. 16. Estimation Model on Varying Number Line Points (a) Position 
Measurement error (b) Computational Time 

From the simulation, by using parameter 𝑀𝑀=645 particles 
and 𝑛𝑛=60 points, a comparison of localization error simulation 
using odometry and filter particle is shown by Table IV.  

TABLE IV.   
ESTIMATION ERROR OF ROBOT LOCALIZATION 

Method Test Type Position 
Error (cm) 

Orientation 
Error 

LLS 
/Odometry  

RMS 64.488 0.119° 
Final 110.477 11.923° 

Particle 
Filter  

RMS 3.932 0.014°  
Final  2.941 0.39° 

Realtime Implementation  
Particle Filter algorithm has been implemented in the robot 

by using the optimal parameters from simulation. The self-
localization using Particle filter starts with initializes the 
particles position over the field uniformly, and uses data from 
the compass as the orientation initialization to eliminate 
ambiguity problem.  

The experiement is carried out by moving the robot in the 
field on free paths and with accelerated motion upto maximum 
velocity 1.5m/s. The robot is driven through the control of the 
GUI system from basestation. 

Fig. 17(a) shows the initial position and Fig. 17(b) shows the 
final position. Where the blue line shows historical position 
estimation data using odometry, while the red line is a historical 
position estimation data using Particle Filter, and green dots are 
the particles.  
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(a) 

 
(b) 

Fig.17. Realtime Implementation of self-Localization using Particle Filter (a) 
initial position and (b) final position 

From Fig. 17, it can be seen that the Particle Filter algorithm 
can be implemented on realtime robot localization system. The 
final robot position in the experiment shows that Particle Filter 
has better robustness compared to odometry localization 
system. 

VI. CONCLUSION 
The self-localization system using Particle filter can be 

implemented on MSL mobile soccer robot by using encoders, 
compass, and omnidirectional vision sensor. The algorithm has 
optimal parameter M = 645 particles and 𝑛𝑛 = 60 points. 
Localization system using Particle Filter has better performance 
than using LLS (odometry) method with estimated simulation 
error value of Particle filter of 3 cm while on the LLS of 110 
cm. 
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