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Abstract—Software testing involves appropriate validation and 
verification of a software component developed during the 
software lifecycle. Usually testing costs often account to high 
budget in the software development process. In order to 
minimize the testing costs, researchers and practitioners 
automate the testing process rather than carry out manual 
testing. Test Case Generation is the process of automatically 
generating a collection of test cases which are applied to a system 
under test.  This paper utilizes branch coverage criteria using the 
Generalized Optimization Meta heuristic (GOM) algorithm and 
code constraint graph (CCG) to efficiently maximize the 
coverage of all the branches. The experimental results show that 
the proposed test generation technique is effective in generating 
tests for an application at large. 
 
Index Terms—Test case generation, branch coverage, 
evolutionary algorithm, Code Constraint Graph 
 

I. INTRODUCTION 

Testing is the process of exercising a software 
component using a selected set of test cases, with the intent of 
revealing defects. Testers need to detect these defects before 
the software becomes operational. Automating the testing 
process is a relevant issue since it will help reduce analysis 
costs by enabling a more systematic approach to testing   [1]. 
A good test case is one that has a high probability of revealing 
a yet undetected defect. It requires the tester to consider the 
goal for each test case, that is, which specific type of defect is 
to be detected by the test case. Test Case Generation (TCG) is 
the process of automatically generating a collection of test 
cases which are applied to a system under test [28]. White-box 
TCG is usually performed by means of symbolic execution, 
i.e., instead of executing the program on normal values (e.g., 
numbers), the program is executed on symbolic values 
representing arbitrary values [9]. Test cases should be 
developed for both valid and invalid input conditions. That is, 
a tester must not assume that the software under test will 
always be provided with valid inputs. Inputs may be incorrect 
for several reasons. For example, software  
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users may have misunderstandings, or lack of information 
about the nature of the inputs. A test case must contain the 
expected output or result and the results of the tests should be 
inspected meticulously. Branch coverage testing criterion 
encounters all the branches in a program i.e., the predicate of 
an ‘if’ statement should be evaluated to both true and false. 
The stronger criteria of condition, multiple-condition and path 
coverage are often infeasible to achieve for programs of more 
than moderate complexity, and thus branch coverage has been 
recognized as the basic measure for testing. 
     A small number of test-data techniques have already been 
automated: random, static and dynamic, analysis-oriented, 
goal-oriented and structural or path-oriented test-data 
generators. Random generator is the simplest method of 
generation techniques, creates large amounts of test data; it 
could actually be used to generate input values for any type of 
program. Ultimately, a data type such as integer, string, or 
heap is just a stream of bits. However, because no information 
exists about the testing objectives, the generators often fail to 
find data that satisfy the stated objectives of the testing 
process. Since it merely relies on probability it has quite low 
chances in finding semantically small faults, and thus 
accomplishing high coverage. A semantically small fault is 
such a fault that is only revealed by a small percentage of the 
program input. Static and dynamic generators execute a 
program symbolically by means of variable substitution 
techniques instead of actual values. This technique requires 
plenty of computer resources. It also puts a lot of restrictions 
on the program. Symbolic execution also implies that a 
symbolic evaluator for the particular language is built which 
indeed requires a great amount of work. XML is now being 
used to replace large relational databases. Therefore, 
performance testing of XQuery implementations on very large 
documents is important [4]. 
     Analysis-oriented generators have the ability to generate 
high quality test-data, but rely upon their designer with a great 
insight into the domain of operation, and hence are not readily 
extrapolate to arbitrary software systems. Goal-oriented 
generators provide guidance towards certain set of paths. 
Instead of letting the generator generate input that traverses 
from the entry to the exit of a program, it generates input that 
traverses a given unspecific path [11]. Because of this, it is 
sufficient for the generator to find input for any path. Two 
methods using this technique have been found: the chaining 
approach and the assertion-oriented approach. The latter is an 
interesting extension of the chaining approach. Typical for the 
chaining approach is the use of data dependence to find 
solutions to branch predicates. The characteristic of chaining 
is to identify a chain of nodes that are vital to the execution of 
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the goal node. This chain is built up iteratively during 
execution. Since this method uses the find-any-path concept it 
is hard to predict the coverage given as a set of goals. 
Assertion-oriented testing truly utilizes the power of goal-
oriented generation. Certain conditions, called assertions are 
automatically inserted in the code. When an assertion is 
executed it is supposed to hold, otherwise there is an error 
either in the program or in the assertion. But they have serious 
problems associated with failing to find the global minima. 
The search space tends to ‘lack features’ and consists of large 
‘flat’ areas which provide no information on the location or 
the direction of the true local minima. Although a number of 
different goal-oriented approaches and algorithms exist, it is 
difficult to judge exactly which approach represents the 
current state of the art. Structural or Path-oriented generation 
identifies the path for which the test data is to be generated. 
Unfortunately, if the path is infeasible that would cause the 
generator to fail to find an input that will traverse the path. 
Even though it has the merit of very thoroughly testing a 
specific path, it has two severe disadvantages. The first is that 
the number of paths is exponential to the number of branches. 
The second is that many paths are impossible to exercise due 
to relationships between the data. Branch coverage criterion 
measures which decision outcomes of an ‘if’ statement have 
been tested. Determining the number of branches in a method 
is also easy. The total number of decision outcomes in a 
method is hence equal to the entry branch in the method plus 
the number of branches that need to be covered.  
The rest of this paper is organized as follows. Section 2 
discusses research related to the related work. Section 3 
presents the details of the proposed approach. Section 4 
describes an experimental study of the proposed criterion and 
observations. Section 5 presents conclusions and future work. 
 

II. RELATED WORK  

 
The work of M.F Bashir, and S.H.K. Banuri, [1] 

extends the paradigm of the test data generation system to 
incorporate both specifications and model based testing which 
helps to perform the reclassification of the code, specification 
or model based techniques. Several attempts have been made 
to develop a system to generate test data automatically. The 
existing such system does not guarantee to generate test data 
in only feasible paths. Praveen Ranjan Srivastava et al. [2] 
proposed a method to generate feasible test data, using 
Genetic Algorithm. It is often desired that test data in the form 
of test sequences within a test suite can be automatically 
generated to achieve required test coverage. The work of 
Sushil K. Prasad et al. [3] proposes Genetic algorithm to test 
data generation for  optimizing software testing. Ana Barbosa 
et al. [5] proposed a test case generation approach to model-
based testing of graphical user interfaces from task models. 
[5] shows how task mutations can be generated automatically, 
enabling a broader range of user behaviors to be considered. 
More recently, Grammar-based test generation has been 
applied to many other testing problems, including the 
generation of eXtensible Markup Language (XML) 

documents and the generation of packets for testing 
communications protocols [6].  

Recent research has shown how to integrate covering-array 
techniques such as pairwise testing into Grammar-based test 
generation tools [6]. Their work proposed two case studies 
showing how to use grammars and covering arrays for 
automated software testing.  Valentin Dallmeier et al. [7] 
combined systematic test case generation and typestate 
mining, static typestate verifier fed with enriched models 
report significantly more true positives, and significantly 
fewer false positives than the earlier proposed models. [8] 
proposed an automatic test generation solution  using dynamic 
symbolic execution, uses distance in control-dependency 
graph to guide path exploration towards the change. [8] is 
effective in generating change-exposing inputs for real-world 
programs.  [9] proposed a symbolic execution mechanism, by 
developing a fully Constraint Logic Programming based 
framework for test case generation of an OO imperative 
language. Rafael Caballero et al. [10] presented a general 
framework for generating SQL query test cases using 
Constraint Logic Programming. [11] presented an automated 
approach to generate unit tests that detect these mutations for 
object-oriented classes, the resulting test suite is optimized 
towards finding defects rather than covering code and the state 
change caused by mutations induces oracles that precisely 
detect the mutants. [12] proposed an approach for automated 
test case generation based on techniques from constraint 
programming. [13] proposed a scalable toolset using Alloy to 
automatically generate test cases satisfying T-wise from SPL 
models. [13] defines strategies to split T-wise combinations 
into solvable subsets.  

 

III.  OVERVIEW OF THE APPROACH 

A. Framework 

The block diagram of this proposed approach is 
depicted as in Fig.1. It consists of a three-tier architecture 
containing the following four blocks: Source code analyzer, 
XML parser, Constraint analyzer and Test data generator. 
Initially, a sample code consisting of only ‘if-else’ constraints 
is taken as input. As the name ‘constraint’ specifies, the input 
code that is to be tested should never contain or be allowed 
any loops such as ‘while’ or ‘for’ loops. The source code 
analyzer block analyses the input code and generates an XML 
document which separates the constraints and their outcomes 
and also neglecting the statements if any, present. The XML 
parser block initiates the XML document and creates a 
notepad file containing the constraints similar to those present 
in the XML document, given as the input file to the algorithm 
employed i.e., the evolutionary meta-heuristic algorithm. The 
primary portion of the third block which is the constraint 
analyzer takes the notepad file generated earlier as input and 
generates a graph called the Code Constraint Graph (CCG). 
This graph indicates the program flow of the source code as to 
which branches are present and which are to be tested. The 
CCG is no longer used because it just shows the control flow 
of the input source code. The secondary portion of the third 
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block called the test data generator block implements the 
evolutionary algorithm namely the Generalized Optimization 
Meta-Heuristic (GOM) algorithm, which takes the notepad 
file to be checked against the constraints separated.   
     The test data generator block first generates a random set 
of integers which may range from positive to negative. The set 
may contain an approximate number of 40-50 random 
integers. For each of the random set of integers, a fitness 
formula is evaluated in order to advance to the next 
population. After calculating the fitness for each of the 
random set of integers, fitness values are assigned to them. 
The chromosome with the optimal fitness is chosen as the 
base chromosome for the next generation of members. Each 
chromosome contains 24 bits. So the 24 members of the next 
population are generated from the base chromosome by 
flipping each bit of it. Those newly generated members are 
then calculated by the given fitness functions. Then the 
chromosomes are ranked according to their fitness values, 
from worst to the best. The optimal chromosomes of the next 
and the previous population are compared. The population 
that has a comparatively lesser optimal chromosome is deleted 
and the other one is kept as the base chromosome for the 
generation of the members of the next population. Cross over 
and mutation operations are applied to them if necessary.  
 

 
Fig. 1.  Proposed Framework for test case generation 

 

B. Motivational Example 

Consider the triangle classification program in Fig. 2, 
which accepts three variables say A, B and C each for the 
three sides of a triangle. The triangle classification accepts 
three integers as the three sides of a triangle, and decides 
which type of triangle it based upon the length of these three 
slides. The four possible results are: scalene, isosceles, 
equilateral and not a triangle.  If all the three sides are equal, 
the program returns an equilateral triangle. If any two sides 
are equal, the program returns an isosceles triangle. If none 

are equal, then the program returns a scalene triangle. So in 
this algorithm the above procedure of ranking and cross-over 
mutation operations are repeated three times, i.e., each for 
three sides of a triangle A, B, C. The generated members of 
the first population contain the chromosomes each with three 
genes that indicate the three variables used in that program. 
Every chromosome is then passed to the notepad file and 
checked against the constraints. When the chromosomes 
passed satisfy the particular constraints, a counter variable is 
incremented so as to count the number of branches satisfied 
by them. This procedure is repeated for each chromosome of 
the first population. After completing all the members of the 
first population, the same operations are performed for each 
pair of genes and then by applying cross over and mutation 
operations. The above procedure is repeated till the maximum 
number of branches is satisfied by the branch coverage 
criterion. The GOM algorithm generates three genes in each 
chromosome, as the number of variables involved in the 
source code is three. Before the generation of the appropriate 
genes in a chromosome, the program module is first parsed 
and all the ‘if-else’ branches involved are separated in a 
notepad file in order to easily give input to the GOM 
algorithm. 

 

 
 Fig. 2.  Module of triangle classification. 

    

C. Formulation of branch coverage 

     The proposed approach in this paper utilizes branch 
coverage criteria using a Generalized Optimization Meta 
heuristic (GOM) algorithm and code constraint graph (CCG). 
The process of generating test cases using GOM algorithm 
and CCG graphs is as follows; assume the input that is to be 
checked against the constraints in the source code to range I 
as: {I1, I2,…,In,}.  Define and identify the test constraint set C 
as: {C1, C2,…,Cm}. For each and every input I, the test cases 
(Tc) are generated so that those inputs must satisfy the 
appropriate constraints encountered in the constraint set and 
this process is repeated until the maximum branch coverage is 
attained as output for the given input set. The amount of 
branch coverage (Tbc) criterion can be expressed 
mathematically as:  

bc  
FITNESS = 100 – Tbc 

 

Where BC - number of branches covered 
SC - number of statements covered 
MC - number of methods covered 
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B – Total number of branches  
S – total number of statements 
M – total number of methods 
 
The steps to be employed are as follows: 
 A sample input code containing ‘if-else’ constraints is 

taken as input. 
 The constraints present in the source code are 

separated by reading line by line and the unnecessary 
statements, header files, braces and new lines are 
removed. 

 The GOM algorithm is employed after generating a 
random set of integers say, up to 40-50 iterations. 

 The test cases are generated by the GOM algorithm 
indicating which branches are covered by appropriate 
chromosomes, each containing three genes.  

 The percentage of branch coverage by the 
chromosomes is obtained by applying the relevant 
formulas regarding the branch coverage. 

 The highest percentage of coverage by the 
chromosomes is returned as the best solution. 

D.  Proposed pseudo code of the algorithm 

Fig. 3 depicts the pseudo code of a Generalized Optimization 
Meta-Heuristic (GOM)  
 

Procedure TDGen 
Input:   
Program: code/program under test 
Output: 
CCG: A code constraint graph, which shows the control 
flow of the source code. 
Test cases: A set of test cases that is generated using GOM 
algorithm. 
begin 

1.       A sample code consisting of “if-else” conditions 
is  taken as input. 

2.   The source code analyzer generates an XML 
document by analyzing the constraints in the source 
code and separates them in that document. 

3.      The XML parser goes through the XML document 
created and creates a notepad file containing only 
constraints so as to easily give as input against the 
GOM algorithm. 

4. The constraint analyzer accepts the notepad as 
input and generates a tree called Code Constraint 
Graph (CCG) so that it shows a program flow of the 
source code with constraints as which branches are 
present and that are to be tested.        

5. For each entry of the requirements. Initialize 
randomly the population of S species (bits) that are 
used to encode D program variables. 
 loop 

 For each of the S bits of the species, find the 
fitness value. 

 Find the base chromosome that has the best 
fitness among the generated members. 

 Generate first population using bit changes to 
the base chromosome, as much times as its 
bits. 

 Evaluate the first population against the 
fitness function to find the fitness value, and 
assign to each of the members. 

 Perform ranking operation to rank the 
members according to their fitness value. 

 Apply either “one-point” or” two point” 
cross over operation by taking either best 
and its successor or worst and its 
predecessor. 

 Modify a single bit of the gene with 
probability P α k-µ (where k is the rank of 
the bit and µ, a free control parameter) 

 Compare the first population and next 
population fitness values. Discard the 
population which has worst base 
chromosome. 

 Repeat the above procedure for next 
population. 

 Update branch coverage criteria, test cases 
and iteration counter. 

       until stopping criterion is met 
6. Return the branch coverage result and test cases. 

end 
  
 Fig. 3 Generalized Optimization Meta-Heuristic (GOM) pseudo code 

 
Separation of constraints from the source code: The source 
code itself cannot be tested since it has irrelevant codes such 
as printing statements, other logical statements, etc. So it is 
necessary to separate the constraints alone from the source 
code, in this case the branches with their appropriate outcomes 
i.e., children. The methodology used to separate the branches 
alone from the source code consists of reading each and every 
line of the source code until a branch or constraint is 
encountered. A better way to implement this methodology is 
to read the source code and place them in an XML document. 
As seen in Fig. 1, the source code analyzer block performs 
this operation. As the branches are separated in that XML 
document, the unnecessary new lines, braces and other header 
files are removed so that only the constraints are filtered. The 
generated XML document is parsed and the appropriate 
operations are performed so that the unnecessary codes are 
removed. As seen in Fig.1, the XML parser block performs 
this operation. The filtered branches are placed in a notepad 
file, given as input to the GOM algorithm. In the notepad, an 
@ symbol is referenced before each branch so that a 
constraint is encountered. If any children’s are present in a 
branch, the @ symbol is incremented and if the line comes 
outside the ‘if-else’ branch, the @ symbol is appropriately 
decremented. The generated filtered branches and/or 
constraints from the source code are visualized as in Fig. 4 as: 
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Fig. 4 Sample constraint generation 

 
Generation of Code Constraint Graph (CCG): The Code 
Constraint Graph can be generated from the notepad file 
created as in Fig.3 to show the control flow of the source code 
consisting of constraints. As in fig. 1, the constraint analyzer 
block performs this operation of generating the CCG. The 
sample CCG generated from the triangle classification module 
can be visualized as in fig. 5 as shown below: 
 

 
 
Fig. 5. CCG generation 

 
Generating test cases using proposed evolutionary 
algorithm: The proposed Generalized Optimization Meta 
Heuristic (GOM) algorithm is a type of an evolutionary 
algorithm (EA) that makes use of evolutionary [16, 17] 
strategies (ES) and evolutionary programming (EP). The main 
idea behind the EAs is to evolve a population of individuals 
(candidate solutions for the problem) through competition, 
mating and mutation [18], so that the average quality of the 
population is systematically increased in the direction of the 
solution of the problem at hand. The evolutionary process of 
the candidate solutions is stochastic and “guided” by the 
setting of adjustable parameters. In an analogy with a natural 
ecosystem, in a EA different organisms (solutions) coexist and 
compete. The more adapted to the design space will be more 
prone to reproduce and generate descendants. On the other 
hand, the worst individuals will have fewer or no offspring. In 
an optimization problem, the fitness [19, 20] of each 

individual is proportional to the value of the objective (cost) 
function, also called fitness function. 

In a GOM algorithm, each bit is considered a species 
and a string of S bits is taken as the initial population of the 
species. The string consisting of S bits then encodes the D 
program variables to be represented in a binary format of 0’s 
and 1’s. In a variation of the canonical GOM described above, 
the bits are ranked separately for each substring that encodes 
each program variable, and N bits, one for each variable are 
flipped at each iteration of the algorithm. First, the GOM 
algorithm generates the random integers of up to 40-50 
numbers. From the generated random numbers, each and 
every two pair of integers is taken into account. The second 
number of the pair is taken and the bits of that number are 
ranked according to their priority. The highest and the lowest 
bits are taken as an average to obtain a result. In the first 
number of the pair the shifting operation is performed, as 
many times as the result of averaging. The same procedure is 
repeated for the second number and the modified first and 
second numbers are kept aside. Then these numbers undergo 
appropriate cross over and mutation operations. The cross 
over method used here is the “two point” cross over.  

The mutation operation is then performed with 
respect to the probability P α k-µ, where k is the rank of the bit 
and µ, a free control parameter. These optimized integers are 
then checked against the notepad file generated earlier. When 
the chromosomes satisfy a particular branch, a counter 
variable is incremented which indicates the number of 
branches that are satisfied by a single chromosome. In this 
case, a single chromosome consists of three genes since the 
number of variables encountered in the triangle classification 
is three namely A, B, C. The above procedure is repeated till 
the chromosomes in all populations by means of branch 
coverage criteria cover a maximum number of branches. The 
general representation of two-point cross over can be 
represented as: The two point crossover operator takes two 
vectors (a1,… , an)  and (b1,… , bn)  and yields two vectors 
(a1,… , ai, bi+1,… , bj, aj+1, ……, an) and (b1,… , bi, ai+1,… , aj, 
bj+1, ……, bn), where 1≤ i < j ≤ n-1 and i and j are randomly 
chosen. This means that both vectors are split at the same two 
positions and assembled with swapped middle parts. An 
example of a mutation operation performed is, Before: 1 1 0 1 
1 0 1 0 0 1 1 0 1 1 1 0, After: 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0, a 
change of bit in the gene takes place at bit position 6. 
 

IV. THE EXPERIMENT 

A. Subject Programs, Faulty Versions, and Test Case Pools  

To examine the efficacy of our approach, the proposed 
approach was evaluated using real-world programs. In this 
section, we report the empirical evaluation results. We 
compared the GOM Coverage with the GA Coverage. In the 
experiments, the Siemens suite programs (Table 1), similar to 
those used by Dawei Qi et al. [8] and Rothermel et al. [15] 
were used to validate the performance of the proposed 
approach. Each program was hand-instrumented to record all 
the coverage information.  Each program has a variety of 
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versions, each containing one fault. Each program also has a 
large universe of inputs. We obtained the subject programs 
from the Software-artifact Infrastructure Repository at UNL 
[14]. 
 

TABLE I 
SIEMENS SUITE SUBJECT PROGRAMS 

Name  Lines of 
code 

Faulty 
version 
count 

Test 
pool size 

Program 

Description 

tcas    162 41 1608 Altitude separation 

totinfo  346 23 1052 Information measure 

schedule  299  9  2650  Priority scheduler 

schedule2  287  10  2710  Priority scheduler 

printtokens  378  7 4130  Lexical analyzer 

printtokens2  366  10  4115  Lexical analyzer 

replace  514  32  5542  Pattern replacement 

Space  9127  38  13,585  Array definition 
language interpreter 

 

B. Experimental Results and Observations 

To examine the efficacy of our approach, we evaluated our 
approach using real-world programs. In this section, we report 
our empirical evaluation results. The obtained results of 
branch coverage criteria can be depicted by a graph as in Fig. 
6 showing the convergence of coverage. The number of 
iterations is scaled along the X-axis and the percentage of 
branch coverage is scaled along the Y-axis. As compared to 
the simple genetic algorithm, GOM algorithm converges 
faster in less number of iterations. The maximum branch 
coverage obtained by applying the proposed algorithm is 
nearly 71%. As seen in Fig. 6, the applied GOM algorithm 
converges at a faster rate than the simple genetic algorithm 
i.e., at iteration 70 (number 7), the GOM reaches the 
maximum branch coverage of 71% and it is consistent in the 
further numbers of iterations, whereas the genetic algorithm 
reaches the maximum branch coverage of 64% only at 
iteration 100 (number 10).  
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Fig. 6. Comparison of branch coverage of GA and GOM 
 

 
Fig. 5. Branch coverage of SIR objects 
 

Fig. 7 shows the Branch coverage of the SIR objects. In terms 
of numbers, the vast majority of all test cases have at least one 
assertion. Although the achieved score is quite high, the 
search based approach offers potential for optimization. While 
the coverage based impact measurement guides the search 
towards assertions, in the experimental of SIR programs, for 
certain cases GOM is fair in coverage. 
 

V. CONCLUSIONS AND FUTURE WORK 

The GOM algorithm implemented gives a suitable way for 
automatic test case generation. The ease of test case 
generation is faster than with the simple genetic algorithm 
since the number of iterations for reaching the optimal 
solution is quick. The separation of constraints from the 
source code and then exporting them to a separate notepad file 
makes the implementation of this algorithm further easier. The 
code constraint graph (CCG) generated allows understanding 
the control flow of the source code to depict the amount of 
statements, branches and methods present and also which are 
covered. The cross-over and mutation operations are optional, 
since the algorithm has the capability to converge well without 
performing those operations. In terms of future work, we can 
extend our method by improving the fitness function to 



Vol.3/No.1 (2011) INTERNETWORKING INDONESIA JOURNAL 17 

ISSN: 1942-9703 / © 2011 IIJ 

deduce a better result above the maximum amount of coverage 
obtained.          
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