
Vol.3/No.1 (2011) INTERNETWORKING INDONESIA JOURNAL 11

ISSN: 1942-9703 / © 2011 IIJ

Abstract—Software testing involves appropriate validation and
verification of a software component developed during the
software lifecycle. Usually testing costs often account to high
budget in the software development process. In order to
minimize the testing costs, researchers and practitioners
automate the testing process rather than carry out manual
testing. Test Case Generation is the process of automatically
generating a collection of test cases which are applied to a system
under test. This paper utilizes branch coverage criteria using the
Generalized Optimization Meta heuristic (GOM) algorithm and
code constraint graph (CCG) to efficiently maximize the
coverage of all the branches. The experimental results show that
the proposed test generation technique is effective in generating
tests for an application at large.

Index Terms—Test case generation, branch coverage,
evolutionary algorithm, Code Constraint Graph

I. INTRODUCTION

Testing is the process of exercising a software
component using a selected set of test cases, with the intent of
revealing defects. Testers need to detect these defects before
the software becomes operational. Automating the testing
process is a relevant issue since it will help reduce analysis
costs by enabling a more systematic approach to testing [1].
A good test case is one that has a high probability of revealing
a yet undetected defect. It requires the tester to consider the
goal for each test case, that is, which specific type of defect is
to be detected by the test case. Test Case Generation (TCG) is
the process of automatically generating a collection of test
cases which are applied to a system under test [28]. White-box
TCG is usually performed by means of symbolic execution,
i.e., instead of executing the program on normal values (e.g.,
numbers), the program is executed on symbolic values
representing arbitrary values [9]. Test cases should be
developed for both valid and invalid input conditions. That is,
a tester must not assume that the software under test will
always be provided with valid inputs. Inputs may be incorrect
for several reasons. For example, software

Selvakumar. S. is with the Department of Information Technology,
Thiagarajar College of Engineering, Madurai, India (Mobile: +91-
9789916648; e-mail: sselvakumar@yahoo.com).
 Ramaraj N is with the Department of Computer Science &Engineering,
G.K.M College of Engineering & Technology, Chennai, India (e-mail:
prof.ramaraj@yahoo.in).

users may have misunderstandings, or lack of information
about the nature of the inputs. A test case must contain the
expected output or result and the results of the tests should be
inspected meticulously. Branch coverage testing criterion
encounters all the branches in a program i.e., the predicate of
an ‘if’ statement should be evaluated to both true and false.
The stronger criteria of condition, multiple-condition and path
coverage are often infeasible to achieve for programs of more
than moderate complexity, and thus branch coverage has been
recognized as the basic measure for testing.
 A small number of test-data techniques have already been
automated: random, static and dynamic, analysis-oriented,
goal-oriented and structural or path-oriented test-data
generators. Random generator is the simplest method of
generation techniques, creates large amounts of test data; it
could actually be used to generate input values for any type of
program. Ultimately, a data type such as integer, string, or
heap is just a stream of bits. However, because no information
exists about the testing objectives, the generators often fail to
find data that satisfy the stated objectives of the testing
process. Since it merely relies on probability it has quite low
chances in finding semantically small faults, and thus
accomplishing high coverage. A semantically small fault is
such a fault that is only revealed by a small percentage of the
program input. Static and dynamic generators execute a
program symbolically by means of variable substitution
techniques instead of actual values. This technique requires
plenty of computer resources. It also puts a lot of restrictions
on the program. Symbolic execution also implies that a
symbolic evaluator for the particular language is built which
indeed requires a great amount of work. XML is now being
used to replace large relational databases. Therefore,
performance testing of XQuery implementations on very large
documents is important [4].
 Analysis-oriented generators have the ability to generate
high quality test-data, but rely upon their designer with a great
insight into the domain of operation, and hence are not readily
extrapolate to arbitrary software systems. Goal-oriented
generators provide guidance towards certain set of paths.
Instead of letting the generator generate input that traverses
from the entry to the exit of a program, it generates input that
traverses a given unspecific path [11]. Because of this, it is
sufficient for the generator to find input for any path. Two
methods using this technique have been found: the chaining
approach and the assertion-oriented approach. The latter is an
interesting extension of the chaining approach. Typical for the
chaining approach is the use of data dependence to find
solutions to branch predicates. The characteristic of chaining
is to identify a chain of nodes that are vital to the execution of

Test Case Generation using GOM Algorithm
Selvakumar Subramanian and Ramaraj Natarajan

12 INTERNETWORKING INDONESIA JOURNAL SELVAKUMAR & RAMARAJ

ISSN: 1942-9703 / © 2011 IIJ

the goal node. This chain is built up iteratively during
execution. Since this method uses the find-any-path concept it
is hard to predict the coverage given as a set of goals.
Assertion-oriented testing truly utilizes the power of goal-
oriented generation. Certain conditions, called assertions are
automatically inserted in the code. When an assertion is
executed it is supposed to hold, otherwise there is an error
either in the program or in the assertion. But they have serious
problems associated with failing to find the global minima.
The search space tends to ‘lack features’ and consists of large
‘flat’ areas which provide no information on the location or
the direction of the true local minima. Although a number of
different goal-oriented approaches and algorithms exist, it is
difficult to judge exactly which approach represents the
current state of the art. Structural or Path-oriented generation
identifies the path for which the test data is to be generated.
Unfortunately, if the path is infeasible that would cause the
generator to fail to find an input that will traverse the path.
Even though it has the merit of very thoroughly testing a
specific path, it has two severe disadvantages. The first is that
the number of paths is exponential to the number of branches.
The second is that many paths are impossible to exercise due
to relationships between the data. Branch coverage criterion
measures which decision outcomes of an ‘if’ statement have
been tested. Determining the number of branches in a method
is also easy. The total number of decision outcomes in a
method is hence equal to the entry branch in the method plus
the number of branches that need to be covered.
The rest of this paper is organized as follows. Section 2
discusses research related to the related work. Section 3
presents the details of the proposed approach. Section 4
describes an experimental study of the proposed criterion and
observations. Section 5 presents conclusions and future work.

II. RELATED WORK

The work of M.F Bashir, and S.H.K. Banuri, [1]

extends the paradigm of the test data generation system to
incorporate both specifications and model based testing which
helps to perform the reclassification of the code, specification
or model based techniques. Several attempts have been made
to develop a system to generate test data automatically. The
existing such system does not guarantee to generate test data
in only feasible paths. Praveen Ranjan Srivastava et al. [2]
proposed a method to generate feasible test data, using
Genetic Algorithm. It is often desired that test data in the form
of test sequences within a test suite can be automatically
generated to achieve required test coverage. The work of
Sushil K. Prasad et al. [3] proposes Genetic algorithm to test
data generation for optimizing software testing. Ana Barbosa
et al. [5] proposed a test case generation approach to model-
based testing of graphical user interfaces from task models.
[5] shows how task mutations can be generated automatically,
enabling a broader range of user behaviors to be considered.
More recently, Grammar-based test generation has been
applied to many other testing problems, including the
generation of eXtensible Markup Language (XML)

documents and the generation of packets for testing
communications protocols [6].

Recent research has shown how to integrate covering-array
techniques such as pairwise testing into Grammar-based test
generation tools [6]. Their work proposed two case studies
showing how to use grammars and covering arrays for
automated software testing. Valentin Dallmeier et al. [7]
combined systematic test case generation and typestate
mining, static typestate verifier fed with enriched models
report significantly more true positives, and significantly
fewer false positives than the earlier proposed models. [8]
proposed an automatic test generation solution using dynamic
symbolic execution, uses distance in control-dependency
graph to guide path exploration towards the change. [8] is
effective in generating change-exposing inputs for real-world
programs. [9] proposed a symbolic execution mechanism, by
developing a fully Constraint Logic Programming based
framework for test case generation of an OO imperative
language. Rafael Caballero et al. [10] presented a general
framework for generating SQL query test cases using
Constraint Logic Programming. [11] presented an automated
approach to generate unit tests that detect these mutations for
object-oriented classes, the resulting test suite is optimized
towards finding defects rather than covering code and the state
change caused by mutations induces oracles that precisely
detect the mutants. [12] proposed an approach for automated
test case generation based on techniques from constraint
programming. [13] proposed a scalable toolset using Alloy to
automatically generate test cases satisfying T-wise from SPL
models. [13] defines strategies to split T-wise combinations
into solvable subsets.

III. OVERVIEW OF THE APPROACH

A. Framework

The block diagram of this proposed approach is
depicted as in Fig.1. It consists of a three-tier architecture
containing the following four blocks: Source code analyzer,
XML parser, Constraint analyzer and Test data generator.
Initially, a sample code consisting of only ‘if-else’ constraints
is taken as input. As the name ‘constraint’ specifies, the input
code that is to be tested should never contain or be allowed
any loops such as ‘while’ or ‘for’ loops. The source code
analyzer block analyses the input code and generates an XML
document which separates the constraints and their outcomes
and also neglecting the statements if any, present. The XML
parser block initiates the XML document and creates a
notepad file containing the constraints similar to those present
in the XML document, given as the input file to the algorithm
employed i.e., the evolutionary meta-heuristic algorithm. The
primary portion of the third block which is the constraint
analyzer takes the notepad file generated earlier as input and
generates a graph called the Code Constraint Graph (CCG).
This graph indicates the program flow of the source code as to
which branches are present and which are to be tested. The
CCG is no longer used because it just shows the control flow
of the input source code. The secondary portion of the third

Vol.3/No.1 (2011) INTERNETWORKING INDONESIA JOURNAL 13

ISSN: 1942-9703 / © 2011 IIJ

block called the test data generator block implements the
evolutionary algorithm namely the Generalized Optimization
Meta-Heuristic (GOM) algorithm, which takes the notepad
file to be checked against the constraints separated.
 The test data generator block first generates a random set
of integers which may range from positive to negative. The set
may contain an approximate number of 40-50 random
integers. For each of the random set of integers, a fitness
formula is evaluated in order to advance to the next
population. After calculating the fitness for each of the
random set of integers, fitness values are assigned to them.
The chromosome with the optimal fitness is chosen as the
base chromosome for the next generation of members. Each
chromosome contains 24 bits. So the 24 members of the next
population are generated from the base chromosome by
flipping each bit of it. Those newly generated members are
then calculated by the given fitness functions. Then the
chromosomes are ranked according to their fitness values,
from worst to the best. The optimal chromosomes of the next
and the previous population are compared. The population
that has a comparatively lesser optimal chromosome is deleted
and the other one is kept as the base chromosome for the
generation of the members of the next population. Cross over
and mutation operations are applied to them if necessary.

Fig. 1. Proposed Framework for test case generation

B. Motivational Example

Consider the triangle classification program in Fig. 2,
which accepts three variables say A, B and C each for the
three sides of a triangle. The triangle classification accepts
three integers as the three sides of a triangle, and decides
which type of triangle it based upon the length of these three
slides. The four possible results are: scalene, isosceles,
equilateral and not a triangle. If all the three sides are equal,
the program returns an equilateral triangle. If any two sides
are equal, the program returns an isosceles triangle. If none

are equal, then the program returns a scalene triangle. So in
this algorithm the above procedure of ranking and cross-over
mutation operations are repeated three times, i.e., each for
three sides of a triangle A, B, C. The generated members of
the first population contain the chromosomes each with three
genes that indicate the three variables used in that program.
Every chromosome is then passed to the notepad file and
checked against the constraints. When the chromosomes
passed satisfy the particular constraints, a counter variable is
incremented so as to count the number of branches satisfied
by them. This procedure is repeated for each chromosome of
the first population. After completing all the members of the
first population, the same operations are performed for each
pair of genes and then by applying cross over and mutation
operations. The above procedure is repeated till the maximum
number of branches is satisfied by the branch coverage
criterion. The GOM algorithm generates three genes in each
chromosome, as the number of variables involved in the
source code is three. Before the generation of the appropriate
genes in a chromosome, the program module is first parsed
and all the ‘if-else’ branches involved are separated in a
notepad file in order to easily give input to the GOM
algorithm.

 Fig. 2. Module of triangle classification.

C. Formulation of branch coverage

 The proposed approach in this paper utilizes branch
coverage criteria using a Generalized Optimization Meta
heuristic (GOM) algorithm and code constraint graph (CCG).
The process of generating test cases using GOM algorithm
and CCG graphs is as follows; assume the input that is to be
checked against the constraints in the source code to range I
as: {I1, I2,…,In,}. Define and identify the test constraint set C
as: {C1, C2,…,Cm}. For each and every input I, the test cases
(Tc) are generated so that those inputs must satisfy the
appropriate constraints encountered in the constraint set and
this process is repeated until the maximum branch coverage is
attained as output for the given input set. The amount of
branch coverage (Tbc) criterion can be expressed
mathematically as:

bc
FITNESS = 100 – Tbc

Where BC - number of branches covered
SC - number of statements covered
MC - number of methods covered

14 INTERNETWORKING INDONESIA JOURNAL SELVAKUMAR & RAMARAJ

ISSN: 1942-9703 / © 2011 IIJ

B – Total number of branches
S – total number of statements
M – total number of methods

The steps to be employed are as follows:
 A sample input code containing ‘if-else’ constraints is

taken as input.
 The constraints present in the source code are

separated by reading line by line and the unnecessary
statements, header files, braces and new lines are
removed.

 The GOM algorithm is employed after generating a
random set of integers say, up to 40-50 iterations.

 The test cases are generated by the GOM algorithm
indicating which branches are covered by appropriate
chromosomes, each containing three genes.

 The percentage of branch coverage by the
chromosomes is obtained by applying the relevant
formulas regarding the branch coverage.

 The highest percentage of coverage by the
chromosomes is returned as the best solution.

D. Proposed pseudo code of the algorithm

Fig. 3 depicts the pseudo code of a Generalized Optimization
Meta-Heuristic (GOM)

Procedure TDGen
Input:
Program: code/program under test
Output:
CCG: A code constraint graph, which shows the control
flow of the source code.
Test cases: A set of test cases that is generated using GOM
algorithm.
begin

1. A sample code consisting of “if-else” conditions
is taken as input.

2. The source code analyzer generates an XML
document by analyzing the constraints in the source
code and separates them in that document.

3. The XML parser goes through the XML document
created and creates a notepad file containing only
constraints so as to easily give as input against the
GOM algorithm.

4. The constraint analyzer accepts the notepad as
input and generates a tree called Code Constraint
Graph (CCG) so that it shows a program flow of the
source code with constraints as which branches are
present and that are to be tested.

5. For each entry of the requirements. Initialize
randomly the population of S species (bits) that are
used to encode D program variables.
 loop

 For each of the S bits of the species, find the
fitness value.

 Find the base chromosome that has the best
fitness among the generated members.

 Generate first population using bit changes to
the base chromosome, as much times as its
bits.

 Evaluate the first population against the
fitness function to find the fitness value, and
assign to each of the members.

 Perform ranking operation to rank the
members according to their fitness value.

 Apply either “one-point” or” two point”
cross over operation by taking either best
and its successor or worst and its
predecessor.

 Modify a single bit of the gene with
probability P α k-µ (where k is the rank of
the bit and µ, a free control parameter)

 Compare the first population and next
population fitness values. Discard the
population which has worst base
chromosome.

 Repeat the above procedure for next
population.

 Update branch coverage criteria, test cases
and iteration counter.

 until stopping criterion is met
6. Return the branch coverage result and test cases.

end

 Fig. 3 Generalized Optimization Meta-Heuristic (GOM) pseudo code

Separation of constraints from the source code: The source
code itself cannot be tested since it has irrelevant codes such
as printing statements, other logical statements, etc. So it is
necessary to separate the constraints alone from the source
code, in this case the branches with their appropriate outcomes
i.e., children. The methodology used to separate the branches
alone from the source code consists of reading each and every
line of the source code until a branch or constraint is
encountered. A better way to implement this methodology is
to read the source code and place them in an XML document.
As seen in Fig. 1, the source code analyzer block performs
this operation. As the branches are separated in that XML
document, the unnecessary new lines, braces and other header
files are removed so that only the constraints are filtered. The
generated XML document is parsed and the appropriate
operations are performed so that the unnecessary codes are
removed. As seen in Fig.1, the XML parser block performs
this operation. The filtered branches are placed in a notepad
file, given as input to the GOM algorithm. In the notepad, an
@ symbol is referenced before each branch so that a
constraint is encountered. If any children’s are present in a
branch, the @ symbol is incremented and if the line comes
outside the ‘if-else’ branch, the @ symbol is appropriately
decremented. The generated filtered branches and/or
constraints from the source code are visualized as in Fig. 4 as:

Vol.3/No.1 (2011) INTERNETWORKING INDONESIA JOURNAL 15

ISSN: 1942-9703 / © 2011 IIJ

Fig. 4 Sample constraint generation

Generation of Code Constraint Graph (CCG): The Code
Constraint Graph can be generated from the notepad file
created as in Fig.3 to show the control flow of the source code
consisting of constraints. As in fig. 1, the constraint analyzer
block performs this operation of generating the CCG. The
sample CCG generated from the triangle classification module
can be visualized as in fig. 5 as shown below:

Fig. 5. CCG generation

Generating test cases using proposed evolutionary
algorithm: The proposed Generalized Optimization Meta
Heuristic (GOM) algorithm is a type of an evolutionary
algorithm (EA) that makes use of evolutionary [16, 17]
strategies (ES) and evolutionary programming (EP). The main
idea behind the EAs is to evolve a population of individuals
(candidate solutions for the problem) through competition,
mating and mutation [18], so that the average quality of the
population is systematically increased in the direction of the
solution of the problem at hand. The evolutionary process of
the candidate solutions is stochastic and “guided” by the
setting of adjustable parameters. In an analogy with a natural
ecosystem, in a EA different organisms (solutions) coexist and
compete. The more adapted to the design space will be more
prone to reproduce and generate descendants. On the other
hand, the worst individuals will have fewer or no offspring. In
an optimization problem, the fitness [19, 20] of each

individual is proportional to the value of the objective (cost)
function, also called fitness function.

In a GOM algorithm, each bit is considered a species
and a string of S bits is taken as the initial population of the
species. The string consisting of S bits then encodes the D
program variables to be represented in a binary format of 0’s
and 1’s. In a variation of the canonical GOM described above,
the bits are ranked separately for each substring that encodes
each program variable, and N bits, one for each variable are
flipped at each iteration of the algorithm. First, the GOM
algorithm generates the random integers of up to 40-50
numbers. From the generated random numbers, each and
every two pair of integers is taken into account. The second
number of the pair is taken and the bits of that number are
ranked according to their priority. The highest and the lowest
bits are taken as an average to obtain a result. In the first
number of the pair the shifting operation is performed, as
many times as the result of averaging. The same procedure is
repeated for the second number and the modified first and
second numbers are kept aside. Then these numbers undergo
appropriate cross over and mutation operations. The cross
over method used here is the “two point” cross over.

The mutation operation is then performed with
respect to the probability P α k-µ, where k is the rank of the bit
and µ, a free control parameter. These optimized integers are
then checked against the notepad file generated earlier. When
the chromosomes satisfy a particular branch, a counter
variable is incremented which indicates the number of
branches that are satisfied by a single chromosome. In this
case, a single chromosome consists of three genes since the
number of variables encountered in the triangle classification
is three namely A, B, C. The above procedure is repeated till
the chromosomes in all populations by means of branch
coverage criteria cover a maximum number of branches. The
general representation of two-point cross over can be
represented as: The two point crossover operator takes two
vectors (a1,… , an) and (b1,… , bn) and yields two vectors
(a1,… , ai, bi+1,… , bj, aj+1, ……, an) and (b1,… , bi, ai+1,… , aj,
bj+1, ……, bn), where 1≤ i < j ≤ n-1 and i and j are randomly
chosen. This means that both vectors are split at the same two
positions and assembled with swapped middle parts. An
example of a mutation operation performed is, Before: 1 1 0 1
1 0 1 0 0 1 1 0 1 1 1 0, After: 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0, a
change of bit in the gene takes place at bit position 6.

IV. THE EXPERIMENT

A. Subject Programs, Faulty Versions, and Test Case Pools

To examine the efficacy of our approach, the proposed
approach was evaluated using real-world programs. In this
section, we report the empirical evaluation results. We
compared the GOM Coverage with the GA Coverage. In the
experiments, the Siemens suite programs (Table 1), similar to
those used by Dawei Qi et al. [8] and Rothermel et al. [15]
were used to validate the performance of the proposed
approach. Each program was hand-instrumented to record all
the coverage information. Each program has a variety of

16 INTERNETWORKING INDONESIA JOURNAL SELVAKUMAR & RAMARAJ

ISSN: 1942-9703 / © 2011 IIJ

versions, each containing one fault. Each program also has a
large universe of inputs. We obtained the subject programs
from the Software-artifact Infrastructure Repository at UNL
[14].

TABLE I
SIEMENS SUITE SUBJECT PROGRAMS

Name Lines of
code

Faulty
version
count

Test
pool size

Program

Description

tcas 162 41 1608 Altitude separation

totinfo 346 23 1052 Information measure

schedule 299 9 2650 Priority scheduler

schedule2 287 10 2710 Priority scheduler

printtokens 378 7 4130 Lexical analyzer

printtokens2 366 10 4115 Lexical analyzer

replace 514 32 5542 Pattern replacement

Space 9127 38 13,585 Array definition
language interpreter

B. Experimental Results and Observations

To examine the efficacy of our approach, we evaluated our
approach using real-world programs. In this section, we report
our empirical evaluation results. The obtained results of
branch coverage criteria can be depicted by a graph as in Fig.
6 showing the convergence of coverage. The number of
iterations is scaled along the X-axis and the percentage of
branch coverage is scaled along the Y-axis. As compared to
the simple genetic algorithm, GOM algorithm converges
faster in less number of iterations. The maximum branch
coverage obtained by applying the proposed algorithm is
nearly 71%. As seen in Fig. 6, the applied GOM algorithm
converges at a faster rate than the simple genetic algorithm
i.e., at iteration 70 (number 7), the GOM reaches the
maximum branch coverage of 71% and it is consistent in the
further numbers of iterations, whereas the genetic algorithm
reaches the maximum branch coverage of 64% only at
iteration 100 (number 10).

Branch coverage

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

Number of iterations

P
er

ce
n

ta
g

e
o

f
b

ra
n

ch

co
ve

ra
g

e

GOM cov

GA cov

Fig. 6. Comparison of branch coverage of GA and GOM

Fig. 5. Branch coverage of SIR objects

Fig. 7 shows the Branch coverage of the SIR objects. In terms
of numbers, the vast majority of all test cases have at least one
assertion. Although the achieved score is quite high, the
search based approach offers potential for optimization. While
the coverage based impact measurement guides the search
towards assertions, in the experimental of SIR programs, for
certain cases GOM is fair in coverage.

V. CONCLUSIONS AND FUTURE WORK

The GOM algorithm implemented gives a suitable way for
automatic test case generation. The ease of test case
generation is faster than with the simple genetic algorithm
since the number of iterations for reaching the optimal
solution is quick. The separation of constraints from the
source code and then exporting them to a separate notepad file
makes the implementation of this algorithm further easier. The
code constraint graph (CCG) generated allows understanding
the control flow of the source code to depict the amount of
statements, branches and methods present and also which are
covered. The cross-over and mutation operations are optional,
since the algorithm has the capability to converge well without
performing those operations. In terms of future work, we can
extend our method by improving the fitness function to

Vol.3/No.1 (2011) INTERNETWORKING INDONESIA JOURNAL 17

ISSN: 1942-9703 / © 2011 IIJ

deduce a better result above the maximum amount of coverage
obtained.

ACKNOWLEDGMENT

We thank Dr. Gregg Rothermel, Dept. of Computer Science,
University of Nebraska, for providing the Siemens Suite of
programs.

REFERENCES
[1] Bashir, M.F, Banuri, S.H.K., "Automated model based software Test Data

Generation System", Proc. 4th International Conference on Emerging
Technologies, pages 275-279, Oct.2008.

[2] Praveen Ranjan Srivastava, Priyanka Gupta, Yogita Arrawatia, Suman
Yadav, Use of genetic algorithm in generation of feasible test data ACM
SIGSOFT Software Engineering Notes, Vol. 34,Issue 2, March 2009

[3] Sushil K. Prasad, Susmi Routray, Reema Khurana and Sartaj Sahni,
“Optimization of Software Testing Using Genetic Algorithm” Third
International Conference Information Systems, Technology and
Management, pages 350-351, March 2009

[4] Daniel Homan, David Ly-Gagnon, Paul Strooper, and Hong-Yi Wang,
Grammar-Based Test Generation with YouGen, Software Practice And
Experience, 1:1-20, 2009.

[5] A. Barbosa, A. Paiva and J.C. Campos, Test case generation from mutated
task models, ACM Symposium on Engineering Interactive Computing
Systems, 2011.

[6] Daniel Hoffman, Hong-Yi Wang, Mitch Chang, David Ly-Gagnon, Lewis
Sobotkiewicz, Paul Strooper, Two case studies in grammar-based test
generation, Journal of Systems and Software, Volume 83 Issue 12,
December, 2010.

[7] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack,
Andreas Zeller, "Generating test cases for specification mining",
Proceedings of the 19th international symposium on Software testing and
analysis ACM, NY, USA 2010.

[8] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, Test Generation to
Expose Changes in Evolving Programs, 25th IEEE/ACM International
Conference on Automated Software Engineering (ASE), September 2010.

[9] Miguel G´Omez-Zamalloa1, Elvira Albert1, Germ´ An Puebla, Test Case
Generation for Object-Oriented", Imperative Languages in CLP, Journal of
Theory and Practice of Logic Programming, Volume 10 Issue 4-6, July
2010.

[10] Rafael Caballero, Yolanda García-Ruiz, Fernando Sáenz-Pérez, " Applying
Constraint Logic Programming to SQL Test Case Generation", Proceedings
of 10th International Symposium, FLOPS 2010, Sendai, Japan, April 19-
21, 2010.

[11] Gordon Fraser, Andreas Zeller, "Mutation-driven Generation of Unit Tests
and Oracles" Proceedings of the 19th international ACM symposium on
Software testing and analysis, NY, USA, 2010.

[12] François Degrave, Tom Schrijvers and Wim Vanhoof, "Towards a
Framework for Constraint-Based Test Case Generation", Logic-Based
Program Synthesis And Transformation, Lecture Notes in Computer
Science, 2010, Volume 6037, 2010.

[13] Perrouin, G., Sen, S., Klein, J., Baudry, B., le Traon, Y., "Automated
and Scalable T-wise Test Case Generation Strategies for Software Product
Lines" , Proceedings of the 2010 Third International Conference on
Software Testing, Verification and Validation, Paris, pages 459 - 468, 6-10,
April 2010.

[14] Software infrastructure repository (SIR)
http://www.cse.unl.edu/~galileo/sir.

[15] Gregg Rothermel,M. J. Harrold, J. Ostrin, and C. Hong. An empirical study
of the effects of minimization on the fault detection capabilities of test
suites. International Conference on Software Maintenance, pages 34–43,
November 1998.

[16] S. Horwitz. Tool support for improving test coverage. In Proceedings of
ESOP 2002: European Symposium on Programming, 2002.

[17] P. McMinn, M. Holcombe. The State Problem for Evolutionary Testing,
GECCO, 2003, pp. 2488–2498.

[18] C.C. Michael, G. McGraw, M. Schatz. Generating Software Test Data by
Evolution, IEEE transactions on software engineering 27 (12) (2001)
1085–1110.

[19] P. Thevenhod-Fosse, H. Waeselynck, STATEMATE: applied to statistical
software testing, Proceedings of the 1998 International Symposium on
Software Testing and Analysis, 1998.

[20] J.M. Voas, L. Morell, K.W. Miller, Predicting where faults can hide
from testing, IEEE Software 8 (2) (1991) 41–48.

Selvakumar. S is completing his Ph.D
research work in Computer Science &
Engineering from the Anna University. He
received the Masters Degree in Computer
Science & Engineering from Madurai Kamaraj
University in 1996. He received the Master of
Business Administration from the same
University. He has over 15 years experience in
various institutions and Organizations.
Currently he is an Assistant Professor in the
Department of Information Technology,

Thiagarajar College of Engineering. He has long been interested in Software
Engineering. His research interests include Software Testing, Software
Quality Engineering, Software Project Management, Software Metrics and
Data mining, Data Base Systems. He also had a carrier as a developer for real-
time, business-critical systems. Thus he has experience both with the practical
problems of software development and the theoretical underpinnings of
Software Engineering and Computer Science. He has presented a number of
papers in international journals and in various other journals. He has carried
out various sponsored Short Term Training Programs and worked on various
Projects. He is a Senior Member in the Computer Society of India, Member in
the Institute of Engineers and the Indian society of Technical Education.

Ramaraj. N received bachelor degree in
Electrical and Electronics Engineering from
Madurai Kamaraj University, Madurai, Tamil
Nadu, in the year 1976. Received Masters
Degree in Power System Engineering from the
Madurai Kamaraj University, Madurai, Tamil
Nadu, in the year 1980. Received PhD degree
from Madurai Kamaraj University, Madurai,
Tamil Nadu in the year 1992 in Computer
Applications. He is the Principal of GKM
Engineering College, Chennai, Tamil Nadu,

India. He has more than 25 years of teaching experience and has presented a
number of papers in international journals (20) and in various other journals
(35). His area of interest is Artificial Intelligence, Software Engineering,
Software Testing and Distributed Computing. He is a Member in the Institute
of Engineers and the Indian society of Technical Education.

